Problems and Exercises ---------------------- LU Factorization ~~~~~~~~~~~~~~~~ **Problem 1.** :math:`\,` Prove that the inverse of a non-singular lower (upper) triangular matrix is also a lower (upper) triangular matrix. **Proof.** :math:`\,` Let :math:`\,\boldsymbol{L}\,` be a non-singular lower triangular matrix of size :math:`\,n\,` over a field :math:`\,K,\ ` and .. The inverse :math:`\,\boldsymbol{L}^{-1}\,` reads .. math:: \boldsymbol{L}^{-1}\ =\ \left[\,\boldsymbol{x}_1\,|\,\boldsymbol{x}_2\,|\,\ldots\,|\, \boldsymbol{x}_n\,\right]\ =\ [x_{ij}]_{\,n\times n}\,, \quad\text{where}\quad \boldsymbol{x}_j\ =\ \left[\begin{array}{c} x_{1j} \\ x_{2j} \\ \ldots \\ x_{nj} \end{array}\right], \quad j=1,2,\ldots,n. Using the Column Rule of Matrix Multiplication, we may write .. math:: \boldsymbol{L}\,\boldsymbol{L}^{-1}\ =\ \boldsymbol{I}_n\,, \boldsymbol{L}\ \left[\,\boldsymbol{x}_1\,|\,\boldsymbol{x}_2\,|\,\ldots\,|\, \boldsymbol{x}_n\,\right]\ =\ \left[\,\boldsymbol{e}_1\,|\,\boldsymbol{e}_2\,|\,\ldots\,|\, \boldsymbol{e}_n\,\right]\,, \left[\, \boldsymbol{L}\boldsymbol{x}_1\,|\, \boldsymbol{L}\boldsymbol{x}_2\,|\,\ldots\,|\, \boldsymbol{L}\boldsymbol{x}_n\,\right]\ =\ \left[\,\boldsymbol{e}_1\,|\,\boldsymbol{e}_2\,|\,\ldots\,|\, \boldsymbol{e}_n\,\right]\,, \boldsymbol{L}\,\boldsymbol{x}_j\ =\ \boldsymbol{e}_j\,, \qquad j=1,2,\ldots,n. Here :math:`\,\boldsymbol{e}_j\,` is a column vector with unity in the :math:`\,j`-th row and zeros elsewhere. According to the Cramer's rule we get .. math:: x_{ij}\ =\ \,\frac{D_{ij}}{D}\,, \qquad\text{where}\quad \begin{array}{l} D_{ij}=\det{\boldsymbol{L}_{ij}}\,, \\ D\ =\ \det{\boldsymbol{L}}\,; \end{array} \quad i,j=1,2,\ldots,n. :math:`\boldsymbol{L}_{ij}\ ` is a matrix obtained from :math:`\boldsymbol{L}\,` by replacing the :math:`\,i`-th column with :math:`\boldsymbol{e}_j\,:` .. math:: \boldsymbol{L}_{ij}\ =\ \left[\, \boldsymbol{x}_1\,|\,\ldots\,|\, \boldsymbol{x}_{i-1}\,|\, \boldsymbol{e}_j\,|\, \boldsymbol{x}_{i+1}\,|\,\ldots\,|\, \boldsymbol{x}_n\,\right]\,, \qquad i,j=1,2,\ldots,n. Remembering that :math:`\boldsymbol{L}\,` is a lower triangular matrix, it's easy to realize that :math:`\,D_{ij}=0\,` for :math:`\,i