Problems -------- **Problem 1.** :math:`\ ` Let .. math:: \boldsymbol{C}\ \ =\ \ \left[\begin{array}{cc} \boldsymbol{A} & \boldsymbol{0}\, \\[4pt] \cdots & \boldsymbol{B}\, \end{array}\right] \ \ =\ \ \left[\begin{array}{ccc|ccc} a_{11} & \ldots & a_{1p} & 0 & \ldots & 0 \\[4pt] \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\[4pt] a_{p1} & \ldots & a_{pp} & 0 & \ldots & 0 \\[4pt] \hline \ldots & \ldots & \ldots & b_{11} & \ldots & b_{1q} \\[4pt] \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\[4pt] \ldots & \ldots & \ldots & b_{q1} & \ldots & b_{qq} \end{array}\right] where the lower left rectangle is filled with any elements. Prove that .. math:: \det{\boldsymbol{C}}\ \,=\ \, \det{\boldsymbol{A}}\,\cdot\,\det{\boldsymbol{B}}\,. **Proof.** :math:`\ ` Induction with respect to :math:`\ q.` **I.** :math:`\ ` We verify the statement for :math:`\ q = 1.\ ` Then :math:`\ \boldsymbol{B}\ =\ [b_{11}]_{1 \times 1}:` .. math:: \boldsymbol{C}\ \ =\ \ \left[\begin{array}{ccc|c} a_{11} & \ldots & a_{1p} & 0 \\[4pt] \ldots & \ldots & \ldots & \ldots \\[4pt] a_{p1} & \ldots & a_{pp} & 0 \\[4pt] \hline \ldots & \ldots & \ldots & b_{11} \end{array}\right] By the Laplace expansion along the last column we get .. math:: \det{\boldsymbol{C}}\ \,=\ \, b_{11}\,\cdot\:(-1)^{2\,(p+1)}\ \det{\boldsymbol{A}}\ \,=\ \, \det{\boldsymbol{A}}\,\cdot\:b_{11}\ \,=\ \, \det{\boldsymbol{A}}\,\cdot\,\det{\boldsymbol{B}}\,. **II.** :math:`\ ` We assume that the statement is true for some :math:`\ q-1,\ \\` and have to prove that the statemant is then true for :math:`\ q.` We shall use the following denotements (:math:`i=1,2,\ldots,q`): :math:`M_{iq}\ -\ ` the minor of matrix :math:`\ \boldsymbol{B}\ ` obtained by removing the :math:`\ i`-th row and the :math:`\ q`-th column; :math:`B_{iq}\ -\ ` the cofactor of the element :math:`\ b_{iq}\ ` in the matrix :math:`\ \boldsymbol{B};` :math:`C_{iq}\ -\ ` the cofactor of the element :math:`\ b_{iq}\ ` in the matrix :math:`\ \boldsymbol{C}.` In virtue of the induction hypothesis: .. math:: \begin{array}{rl} C_{iq} & =\ \ (-1)^{(p+i)+(p+q)}\ \cdot\ \det{\boldsymbol{A}}\ \cdot\ M_{iq}\ \ = \\ & =\ \ (-1)^{2p+(i+q)}\ \cdot\ \det{\boldsymbol{A}}\ \cdot\ M_{iq}\ \ = \\ & =\ \ \det{\boldsymbol{A}}\ \cdot\ (-1)^{i+q}\ \cdot\ M_{iq}\ \ =\ \ \det{\boldsymbol{A}}\ \cdot\ B_{iq}\,. \end{array} The Laplace expansion along the last column of matrix :math:`\ \boldsymbol{C}\ ` yields .. math:: \det{\boldsymbol{C}}\ \,=\ \, \displaystyle\sum_{i=1}^q\ b_{iq}\,C_{iq}\ =\ \det{\boldsymbol{A}}\ \cdot\ \displaystyle\sum_{i=1}^q\,b_{iq}\ B_{iq}\ =\ \det{\boldsymbol{A}}\ \cdot\ \det{\boldsymbol{B}}\,. \quad\bullet **Corollary.** :math:`\\` Suppose that :math:`\ \boldsymbol{A}_1,\,\boldsymbol{A}_2,\,\ldots,\,\boldsymbol{A}_k\ ` are square matrices, possibly of different sizes. Once again by induction one may easily prove the formula for the determinant of the block-diagonal matrix: .. math:: \left|\begin{array}{cccc} \boldsymbol{A}_1 & \boldsymbol{0} & \ldots & \boldsymbol{0} \\[4pt] \boldsymbol{0} & \boldsymbol{A}_2 & \ldots & \boldsymbol{0} \\[4pt] \cdots & \cdots & \cdots & \cdots \\[4pt] \boldsymbol{0} & \boldsymbol{0} & \ldots & \boldsymbol{A}_k \end{array}\right|\ \ =\ \ \det{\boldsymbol{A}_1}\ \cdot\ \det{\boldsymbol{A}_2} \ \cdot\ \ldots\ \cdot\ \det{\boldsymbol{A}_k}\,. In particular, if :math:`\ \boldsymbol{I}_n\in M_n(K)\ ` is the identity matrix, :math:`\ \boldsymbol{A}\in M_m(K),\ ` then .. math:: \det{(\boldsymbol{I}_n\otimes\boldsymbol{A})}\ \ =\ \ \underbrace{ \left|\begin{array}{cccc} \boldsymbol{A} & \boldsymbol{0} & \cdots & \boldsymbol{0} \\[3pt] \boldsymbol{0} & \boldsymbol{A} & \cdots & \boldsymbol{0} \\[3pt] \cdots & \cdots & \cdots & \cdots \\[3pt] \boldsymbol{0} & \boldsymbol{0} & \cdots & \boldsymbol{A} \end{array}\right|}_{n\ \text{blocks}}\ \ =\ \ \left(\det{\boldsymbol{A}}\right)^n. **Problem 2.** :math:`\ ` Prove that if :math:`\ \boldsymbol{P}_\sigma\in M_n(K)\ ` is the matrix of a permutation :math:`\,\sigma\in S_n\,,\ ` then :math:`\ \det\boldsymbol{P}_\sigma\ =\ \text{sgn}\,\sigma\,.` **Proof.** Any permutation :math:`\,\sigma\in S_n\ ` may be represented as a product of transpositions: .. math:: \sigma\ =\ \tau_k\,\dots\,\tau_2\ \tau_1\,. Accordingly, the matrix :math:`\ \boldsymbol{P}_\sigma\,` is a product of matrices representing transpositions: .. math:: \boldsymbol{P}_\sigma\ =\ \boldsymbol{P}_{\tau_k\,\dots\,\tau_2\ \tau_1}\ =\ \boldsymbol{P}_{\tau_1}\ \boldsymbol{P}_{\tau_2}\ \ldots\ \boldsymbol{P}_{\tau_k}\,. Transpositions are represented by elementary matrices of the first kind :math:`\\` (obtained from the identity matrix by a transposition of two rows). So .. math:: \boldsymbol{P}_\sigma\ =\ \boldsymbol{E}_1^{(1)}\,\boldsymbol{E}_1^{(2)}\,\ldots\ \boldsymbol{E}_1^{(k)}\,. Every elementary matrix of the first kind has determinant :math:`-1`: .. math:: \det{\boldsymbol{E}_1^{(i)}}\ =\ -1\,,\qquad i=1,2,\ldots\,k. Determinant of a product of matrices being equal to the product of determinants: .. math:: \det{\left(\boldsymbol{E}_1^{(1)}\,\boldsymbol{E}_1^{(2)}\,\ldots\, \boldsymbol{E}_1^{(k)}\right)}\ \ =\ \ \det{\boldsymbol{E}_1^{(1)}}\cdot\ \det{\boldsymbol{E}_1^{(2)}}\, \cdot\ \ldots\ \cdot\ \det{\boldsymbol{E}_1^{(k)}}\,, we obtain (:math:`\,k\,` is the number of factors in any representation of :math:`\,\sigma\,` as a product of transpositions): .. math:: \det{\boldsymbol{P}_{\sigma}}\ =\ (-1)^k\ =\ \text{sgn}\,\sigma\,. \quad\bullet .. Thus we have come up with the thesis of the statement.