Square Matrix as a Linear Operator ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ For a given matrix :math:`\,\boldsymbol{A}\,\in M_n(C)\,` we define a mapping .. math:: :label: transf F:\quad C^n \ni \,\boldsymbol{x} \ \,\to\ \, F(\boldsymbol{x})\,:\,=\, \boldsymbol{A}\,\boldsymbol{x} \,\in\, C^n\,. More precisely, :math:`\,` if :math:`\ \ \boldsymbol{A}= [\,\boldsymbol{A}_1\,|\,\boldsymbol{A}_2\,|\,\ldots\,|\,\boldsymbol{A}_n\,]= [a_{ij}]_{n\times n}\,,\ \ \boldsymbol{x}\ =\ [x_{i}]_n\,,\ ` then .. math:: F\ \left[\begin{array}{c} x_{1} \\ x_{2} \\ \ldots \\ x_{n} \end{array}\right]\ = \ \left[\begin{array}{cccc} a_{11} & a_{12} & \ldots & a_{1n} \\ a_{21} & a_{22} & \ldots & a_{2n} \\ \ldots & \ldots & \ldots & \ldots \\ a_{n1} & a_{n2} & \ldots & a_{nn} \end{array}\right]\ \left[\begin{array}{c} x_{1} \\ x_{2} \\ \ldots \\ x_{n} \end{array}\right]\,. We take a simplified notation for an image of a vector :math:`\,\boldsymbol{x}\,` under the mapping :math:`\,F`: .. math:: F(\boldsymbol{x})\rightarrow F\boldsymbol{x}\,. **Theorem 0.** :math:`\\ \ ` The mapping :eq:`transf` is a linear operator on the space :math:`\,C^n\,`: :math:`\ \ F\in\text{End}\,(C^n)`. **Proof.** :math:`\\` Linearity of the mapping :math:`F` is a consequence of matrix multiplication: .. math:: F(\boldsymbol{x}+\boldsymbol{y})\ =\ \boldsymbol{A}\,(\boldsymbol{x}+\boldsymbol{y})\ =\ \boldsymbol{A}\,\boldsymbol{x}\ +\ \boldsymbol{A}\,\boldsymbol{y}\ =\ F(\boldsymbol{x})\, +\, F(\boldsymbol{y})\,, F(\lambda\,\boldsymbol{x})\ =\ \boldsymbol{A}\,(\lambda\,\boldsymbol{x})\ =\ \lambda\ (\boldsymbol{A}\,\boldsymbol{x})\ =\ \lambda\ F(\boldsymbol{x})\,, \quad \boldsymbol{x},\boldsymbol{y}\,\in C^n,\ \ \lambda \in C. **Theorem 1.** :math:`\\ \ ` :math:`\boldsymbol{A}\,` is a matrix of the operator :math:`\,F\,` in the canonical basis :math:`\,\mathcal{E}\,` of the space :math:`\,C^n :` :math:`\ \boldsymbol{A}\,=\,M_{\mathcal{E}}(F)`. **Proof.** :math:`\\` Let :math:`\,\mathcal{E}\,=\,(\boldsymbol{e}_1,\, \boldsymbol{e}_2,\,\dots,\,\boldsymbol{e}_n)\,` be the canonical basis of the space :math:`\,C^n.\ ` Then .. math:: \begin{array}{rl} M_{\mathcal{E}}(F) \!\!\! & =\ \ [\ F(\boldsymbol{e}_1)\ |\ F(\boldsymbol{e}_2)\ | \ \ldots\,|\ F(\boldsymbol{e}_n)\,]\ \ = \\ & =\ \ [\ \boldsymbol{A}\boldsymbol{e}_1\,| \ \boldsymbol{A}\boldsymbol{e}_2\,| \,\ldots\,|\ \boldsymbol{A}\boldsymbol{e}_n\,]\ \ = \\ & = \ \ [\ \boldsymbol{A}_1\,|\ \boldsymbol{A}_2\,| \ \ldots\,|\ \boldsymbol{A}_n\,]\ \ =\ \ \boldsymbol{A}\,. \end{array} **Theorem 2.** :math:`\\ \ ` Eigenvalues of the operator :math:`\,F\,` are roots of the characteristic equation of the matrix :math:`\boldsymbol{A}.` **Proof.** :math:`\\` A vector :math:`\,\boldsymbol{x} \in C^n\setminus\{\boldsymbol{0}\}\,` is an eigenvector of the operator :math:`\,F\,` associated with the eigenvalue :math:`\,\lambda \in C` :math:`\,` if .. :math:`\ F(\boldsymbol{x})\,=\,\lambda\,\boldsymbol{x},\ ` czyli gdy :math:`\boldsymbol{A}\,\boldsymbol{x} = \lambda\,\boldsymbol{x}`, .. math:: :label: eigen_1 \begin{array}{rc} & F(\boldsymbol{x})\,=\,\lambda\,\boldsymbol{x}, \\ \text{that is} & \boldsymbol{A}\,\boldsymbol{x} = \lambda\,\boldsymbol{x}\,, \end{array} (\boldsymbol{A}-\lambda\,\boldsymbol{I}_n)\ \boldsymbol{x}\ =\ \boldsymbol{0}\,. The homogeneous linear problem :eq:`eigen_1` has a non-zero solution :math:`\,\boldsymbol{x}\,` if and only if :math:`\\` :math:`\ \det{(\boldsymbol{A}-\lambda\,\boldsymbol{I}_n)}\ =\ 0\,,\ ` that is, if :math:`\,\lambda\,` is a characteristic root of the matrix :math:`\,\boldsymbol{A}`. Numbers :math:`\,\lambda\,` and the associated non-zero vectors :math:`\,\boldsymbol{x}\,` determined by the equation :eq:`eigen_1` will be called eigenvalues and eigenvectors of the matrix :math:`\,\boldsymbol{A}`. Hence, a vector :math:`\,\boldsymbol{x} \in C^n\,` is an eigenvector of the matrix :math:`\,\boldsymbol{A} \in M_n(C)\ ` associated with an eigenvalue :math:`\,\lambda \in C\ ` if :math:`\,\boldsymbol{x}\neq\boldsymbol{0}\ \ ` and :math:`\ \ \boldsymbol{A}\,\boldsymbol{x} = \lambda\,\boldsymbol{x}`. **Theorem 3.** 1. :math:`\ ` If :math:`\boldsymbol{A}\,` is a Hermitian matrix, :math:`\ ` then :math:`\,F\,` is a Hermitian operator: .. math:: \boldsymbol{A}^+=\ \boldsymbol{A}\quad\Rightarrow\quad F^+=\ F\,. 2. :math:`\ ` If :math:`\boldsymbol{A}\,` is a unitary matrix, :math:`\ ` then :math:`\,F\,` is a unitary operator: .. math:: \boldsymbol{A}^+\boldsymbol{A}\,=\,\boldsymbol{I}_n \quad\Rightarrow\quad F^+F\,=\,I\,, (:math:`I\ ` the identity operator on the space :math:`\ C^n`). 3. :math:`\ ` If :math:`\boldsymbol{A}\,` is a normal matrix, :math:`\ ` then :math:`\,F\,` is a normal operator: .. math:: \boldsymbol{A}^+\boldsymbol{A}\,=\,\boldsymbol{A}\,\boldsymbol{A}^+ \quad\Rightarrow\quad F^+F\,=\,F\,F^+\,. Hence, all the theorems about eigenvalues and eigenvectors of Hermitian (unitary, normal) operators may be applied to eigenvalues and eigenvectors of Hermitian (unitary, normal) matrices. .. **Dowód Twierdzenia 3.** opiera się na poniższych przesłankach. **Introduction to a proof of Theorem 3.** Hermitian conjugate of a matrix :math:`\boldsymbol{A} \in M_n(C)`: .. math:: \boldsymbol{A}^+:\,=\,(\boldsymbol{A}^T)^* =\,(\boldsymbol{A}^*)^T\,. Hermitian conjugation of an operator :math:`\ F\in\text{End}(V)\ ` on a unitary space :math:`\ V=V(C)\ `: .. math:: \langle\boldsymbol{x},F^+\boldsymbol{y}\rangle:\,=\, \langle F\boldsymbol{x},\boldsymbol{y}\rangle\,,\quad \boldsymbol{x},\boldsymbol{y}\in V\,. A necessary and sufficient condition for equality of two vectors: Let :math:`\ \boldsymbol{x},\boldsymbol{y} \in V\,,\ ` where :math:`\ V=V(C)\ ` unitary. Then .. math:: \boldsymbol{x} = \boldsymbol{y} \quad \Leftrightarrow \quad \langle \boldsymbol{z}, \boldsymbol{x} \rangle = \langle \boldsymbol{z}, \boldsymbol{y} \rangle \quad \text{for all } \boldsymbol{z} \in V\,. A necessary and sufficient condition for equality of two linear operators: Let :math:`\ F,G\in\text{End}(V)\,,\ ` where :math:`\ V=V(C)\ ` unitary. Then .. math:: F = G \quad \Leftrightarrow \quad \langle \boldsymbol{x}, F \boldsymbol{y} \rangle = \langle \boldsymbol{x}, G \boldsymbol{y} \rangle \quad \text{for all } \boldsymbol{x},\boldsymbol{y} \in V\,. An inner product on the space :math:`C^n`: For :math:`\ \ \boldsymbol{x}\ =\ \left[\begin{array}{c} x_1 \\ x_2 \\ \ldots \\ x_n \end{array}\right],\ \ \boldsymbol{y}\ =\ \left[\begin{array}{c} y_1 \\ y_2 \\ \ldots \\ y_n \end{array}\right] \in C^n\,,` .. iloczyn skalarny dany jest przez \sum_{i\,=\,1}^n\ x_i^*\,y_i\,=\; .. math:: \langle \boldsymbol{x},\boldsymbol{y} \rangle \ =\ x_1^*\,y_1\,+\;x_2^*\,y_2\,+\;\dots\;+\;x_n^*\,y_n \,=\;[\,x_1^*,\,x_2^*,\,\dots,\,x_n^*\,]\ \left[\begin{array}{c} y_1 \\ y_2 \\ \dots \\ y_n \end{array}\right]\ =\ \boldsymbol{x}^+\boldsymbol{y}\,. .. **Lemat** :math:`\,` określa sprzężenie hermitowskie :math:`\ F^+\ ` operatora :math:`\ F\ ` danego przez :eq:`transf`: Hermitian conjuagation :math:`\ F^+\ ` of the operator :math:`\ F\ ` given by :eq:`transf` describes **Lemma**. .. math:: :label: lemma \begin{array}{lc} & F(\boldsymbol{x})=\boldsymbol{A}\,\boldsymbol{x}\quad\Rightarrow\quad F^+(\boldsymbol{x})=\boldsymbol{A}^+\boldsymbol{x}, \\ \text{that is,} & F\,\boldsymbol{x}=\boldsymbol{A}\,\boldsymbol{x}\quad\Rightarrow\quad F^+\,\boldsymbol{x}=\boldsymbol{A}^+\boldsymbol{x}. \end{array} **Proof** of the lemma. For every vector :math:`\ \boldsymbol{y}\in C^n:` .. math:: \begin{array}{rcl} \langle\boldsymbol{y},F^+\boldsymbol{x}\rangle \!\! & =\ \ \ \langle F\boldsymbol{y},\boldsymbol{x}\rangle \ =\ \langle \boldsymbol{A}\,\boldsymbol{y},\boldsymbol{x}\rangle\ = & \\ & =\ (\boldsymbol{A}\,\boldsymbol{y})^+\,\boldsymbol{x}\ =\ \ \boldsymbol{y}^+\boldsymbol{A}^+\boldsymbol{x}\ = & \!\! \langle\boldsymbol{y},\boldsymbol{A}^+\boldsymbol{x}\rangle\,, \end{array} and thus :math:`\ F^+\boldsymbol{x}=\boldsymbol{A}^+\boldsymbol{x}, \ \ \boldsymbol{x}\in C^n`. **Proof** of the Theorem 3. 1. :math:`\ ` Assume that :math:`\ \boldsymbol{A}^+=\,\boldsymbol{A}.\ ` Then for arbitrary :math:`\,\boldsymbol{x},\boldsymbol{y}\in C^n`: .. math:: \begin{array}{rll} \langle\boldsymbol{x},F^+\boldsymbol{y}\rangle \!\! & =\ \ \langle F\boldsymbol{x},\boldsymbol{y}\rangle\ \ =\ \ \langle\boldsymbol{A}\,\boldsymbol{x},\boldsymbol{y}\rangle\ \ =\ \ (\boldsymbol{A}\,\boldsymbol{x})^+\boldsymbol{y}\ \ = & \\ & =\ \ \boldsymbol{x}^+\boldsymbol{A}^+\boldsymbol{y}\ \ =\ \ \ \boldsymbol{x}^+\boldsymbol{A}\,\boldsymbol{y}\ \ \ =\ \ \langle\boldsymbol{x},\boldsymbol{A}\,\boldsymbol{y}\rangle\ \ = & \!\! \langle\boldsymbol{x},F\boldsymbol{y}\rangle , \end{array} so that :math:`\ F^+=\ F`. 2. :math:`\ ` Assume that :math:`\ \boldsymbol{A}^+\boldsymbol{A}=\boldsymbol{I}_n.\ ` Then for arbitrary :math:`\,\boldsymbol{x},\boldsymbol{y}\in C^n`: .. math:: \begin{array}{rll} \langle\boldsymbol{x},(F^+F)\,\boldsymbol{y}\rangle \!\! & =\ \ \langle\boldsymbol{x},F^+(F\boldsymbol{y})\rangle\ \ =\ \ \langle F\boldsymbol{x}\,,F\boldsymbol{y}\rangle\ \ =\ \ \langle\boldsymbol{A}\,\boldsymbol{x}, \boldsymbol{A}\,\boldsymbol{y}\rangle\ \ = & \\ & =\ \ (\boldsymbol{A}\boldsymbol{x})^+\, (\boldsymbol{A}\boldsymbol{x})\ \ =\ \ \boldsymbol{x}^+\boldsymbol{A}^+ \boldsymbol{A}\,\boldsymbol{y}\ \ \, = \quad \boldsymbol{x}^+\boldsymbol{I}_n\,\boldsymbol{y}\quad\ = & \langle\boldsymbol{x},I\,\boldsymbol{y}\rangle , \end{array} so that :math:`\ F^+F=I`. 3. :math:`\ ` Assume that :math:`\ \boldsymbol{A}^+\boldsymbol{A}= \boldsymbol{A}\boldsymbol{A}^+.\ ` By Lemma :eq:`lemma`, .. Then for arbitrary :math:`\,\boldsymbol{x},\boldsymbol{y}\in C^n`: .. math:: \begin{array}{rl} \langle\boldsymbol{x},(F^+F)\,\boldsymbol{y}\rangle \!\! & =\ \ \langle\boldsymbol{x},F^+(F\boldsymbol{y})\rangle\ \ =\ \ \langle F\boldsymbol{x}\,,F\boldsymbol{y}\rangle\ \ =\ \ \langle\boldsymbol{A}\,\boldsymbol{x}, \boldsymbol{A}\,\boldsymbol{y}\rangle\ \ = \\ & =\ (\boldsymbol{A}\,\boldsymbol{x})^+ (\boldsymbol{A}\,\boldsymbol{y})\ \ =\ \ \boldsymbol{x}^+(\boldsymbol{A}^+\boldsymbol{A})\,\boldsymbol{y}\ \ =\ \ \boldsymbol{x}^+(\boldsymbol{A}\boldsymbol{A}^+)\,\boldsymbol{y}\ = \\ & =\ (\boldsymbol{A}^+\boldsymbol{x})^+ (\boldsymbol{A}^+\boldsymbol{y})\ =\ \langle\boldsymbol{A}^+\boldsymbol{x}, \boldsymbol{A}^+\boldsymbol{y}\rangle\ =\ \langle F^+\boldsymbol{x},F^+\boldsymbol{y}\rangle\ = \\ \langle\boldsymbol{x},(FF^+)\,\boldsymbol{y}\rangle , \end{array} for every :math:`\,\boldsymbol{x},\boldsymbol{y}\in C^n,\ ` and thus :math:`\ F^+F=FF^+`.