Similarity Transformation ~~~~~~~~~~~~~~~~~~~~~~~~~ .. admonition:: Definition. Matrices :math:`\,\boldsymbol{A},\,\boldsymbol{B}\in M_n(C)\,` are *similar* if there exists a matrix :math:`\ \boldsymbol{P}\in M_n(C)\ ` such that .. math:: \boldsymbol{B}\ =\ \boldsymbol{P}^{-1} \boldsymbol{A}\,\boldsymbol{P}\,. Then the matrix :math:`\,\boldsymbol{B}\,` is related with :math:`\,\boldsymbol{A}\,` by a *similarity transformation*. **Theorem 4.** :math:`\ ` Characteristic polynomials of similar matrices are equal. Namely, if :math:`\ \boldsymbol{B}\,=\, \boldsymbol{P}^{-1} \boldsymbol{A}\,\boldsymbol{P},\ \ \ \boldsymbol{A},\boldsymbol{B},\boldsymbol{P}\in M_n(C),\ \det\boldsymbol{P}\neq 0\,,\ ` then :math:`\ \ w_{\boldsymbol{B}}(\lambda) = w_{\boldsymbol{A}}(\lambda)\,,\ ` where :math:`\ w_{\boldsymbol{X}}(\lambda) = \det(\boldsymbol{X}-\lambda\,\boldsymbol{I}_n)\,` with :math:`\ \boldsymbol{I}_n\ ` an identity matrix of size :math:`n` denotes a characteristic polynomial of matrix :math:`\boldsymbol{X} = \boldsymbol{A},\,\boldsymbol{B}\,.` **Proof** bases on Cauchy's theorem on determinant of a product of matrices: .. math:: \begin{array}{rl} w_{\boldsymbol{B}}(\lambda) \!\! & =\ \ \det{(\boldsymbol{B}-\lambda\,\boldsymbol{I}_n)}\ = \\ & =\ \ \det{(\boldsymbol{P}^{-1}\boldsymbol{A}\,\boldsymbol{P} - \boldsymbol{P}^{-1}\lambda\,\boldsymbol{I}_n\ \boldsymbol{P})}\ = \\ & =\ \ \det{[\,\boldsymbol{P}^{-1} (\boldsymbol{A}-\lambda\,\boldsymbol{I}_n)\, \boldsymbol{P}\,]}\ = \\ & =\ \ \det{\boldsymbol{P}^{-1}}\cdot\ \det{(\boldsymbol{A}-\lambda\,\boldsymbol{I}_n)}\ \cdot\ \det{\boldsymbol{P}}\ = \\ & =\ \ (\det{\boldsymbol{P}})^{-1}\cdot\ \det{(\boldsymbol{A}-\lambda\,\boldsymbol{I}_n)}\,\cdot\, \det{\boldsymbol{P}}\ = \\ & =\ \ \det{(\boldsymbol{A}-\lambda\,\boldsymbol{I}_n)}\ \ =\ \ w_{\boldsymbol{A}}(\lambda)\,. \end{array} .. **Wniosek.** Macierze podobne mają takie same wartości własne, o takich samych krotnościach algebraicznych. **Corollary.** Similar matrices have the same set of eigenvalues. The corresponding eigenvalues have the same algebraic multiplicities. **Theorem 5.** :math:`\\` The corresponding eigenvalues of similar matrices have the same geometric multilplicity. **Proof.** :math:`\\` Let :math:`\ \lambda\in C\ ` be an eigenvalue of the matrix :math:`\ \boldsymbol{A}\in M_n(C)\ ` with geometric mutliplicity :math:`\,k`. Then this eigenvalue is associated with :math:`\,k\,` linearly independent eigenvectors :math:`\ \boldsymbol{x}_i\,` of the matrix :math:`\ \boldsymbol{A}:` .. math:: :label: condition \boldsymbol{A}\,\boldsymbol{x}_i\ =\ \lambda\,\boldsymbol{x}_i\,, \quad i=1,2,\ldots,k\,; \sum_{i=1}^k\,\alpha_i\,\boldsymbol{x}_i\ =\ \boldsymbol{0} \quad\Rightarrow\quad\alpha_i=0,\ \ i=1,2,\ldots,k\,. Let :math:`\ \boldsymbol{B}\,=\, \boldsymbol{P}^{-1}\boldsymbol{A}\,\boldsymbol{P},\ ` :math:`\ \boldsymbol{y}_i\,=\,\boldsymbol{P}^{-1}\,\boldsymbol{x}_i,\ \ i=1,2,\ldots,k\,,\ ` :math:`\ \boldsymbol{P}\in M_n(C),\, \det{\boldsymbol{P}}\neq 0.\ ` Then .. math:: \boldsymbol{B}\,\boldsymbol{y}_i\ =\ (\boldsymbol{P}^{-1}\boldsymbol{A}\,\boldsymbol{P})\, (\boldsymbol{P}^{-1}\boldsymbol{x}_i)\ =\ \boldsymbol{P}^{-1}\boldsymbol{A}\,(\boldsymbol{P}\, \boldsymbol{P}^{-1})\ \boldsymbol{x}_i\ = \quad =\ \boldsymbol{P}^{-1}(\boldsymbol{A}\,\boldsymbol{x}_i)\ =\ \boldsymbol{P}^{-1}(\lambda\,\boldsymbol{x}_i)\ =\ \lambda\,(\boldsymbol{P}^{-1}\boldsymbol{x}_i)\ =\ \lambda\,\boldsymbol{y}_i\,, \sum_{i=1}^k\,\alpha_i\,\boldsymbol{y}_i\ =\ \boldsymbol{0} \quad\Leftrightarrow\quad \sum_{i=1}^k\,\alpha_i\,(\boldsymbol{P}^{-1}\,\boldsymbol{x}_i)\ =\ \boldsymbol{0} \quad\Leftrightarrow\quad \boldsymbol{P}^{-1}\,\sum_{i=1}^k\,\alpha_i\,\boldsymbol{x}_i\ =\ \boldsymbol{0} \quad\Leftrightarrow\quad \Leftrightarrow\qquad\sum_{i=1}^k\,\alpha_i\,\boldsymbol{x}_i\ =\ \boldsymbol{0} \quad\Rightarrow\quad \alpha_i=0,\ \ i=1,2,\ldots,k. Hence, the matrix :math:`\ \boldsymbol{B}\ ` satisfies the conditions analogous to :eq:`condition`: .. math:: \boldsymbol{B}\,\boldsymbol{y}_i\ =\ \lambda\,\boldsymbol{y}_i\,, \quad i=1,2,\ldots,k\,; \sum_{i=1}^k\,\alpha_i\,\boldsymbol{y}_i\ =\ \boldsymbol{0} \quad\Rightarrow\quad\alpha_i=0,\ \ i=1,2,\ldots,k\,, which means that :math:`\ \lambda\ ` is an eigenvalue of the matrix :math:`\ \boldsymbol{B}\ ` with the same (as the matrix :math:`\,\boldsymbol{A})` geometric multiplicity :math:`\,k`. **Theorem 6.** :math:`\\` Similar matrices have the same determinant and trace, and are of the same rank, i.e., if :math:`\ \boldsymbol{B}\,=\, \boldsymbol{P}^{-1}\boldsymbol{A}\,\boldsymbol{P},\ ` :math:`\boldsymbol{A},\boldsymbol{B},\boldsymbol{P}\in M_n(C), \ \det{\boldsymbol{P}}\neq 0,\ \ ` then .. math:: \det{\boldsymbol{B}}\,=\det{\boldsymbol{A}},\quad \text{Tr}\,{\boldsymbol{B}}\,=\,\text{Tr}\,{\boldsymbol{A}},\quad \text{rk}\,{\boldsymbol{B}}\,=\,\text{rk}\,{\boldsymbol{A}}\,. First two equalities follow from a previous theorem on equality of characteristic polynomials of similar matrices. Namely, :math:`\ \det{\boldsymbol{A}},\,\det{\boldsymbol{B}}\ ` are constant terms (coefficients of :math:`\ \lambda^0`), :math:`\ ` and :math:`\ \text{Tr}\,\boldsymbol{A},\,\text{Tr}\,\boldsymbol{B}\ ` are coefficients of the term :math:`\ \lambda^{(n-1)}\ ` in characteristic polynomials of matrices :math:`\ \boldsymbol{A},\,\boldsymbol{B}`. Equality of polynomials implies equality of the coefficients of the terms having the same power :math:`\ \lambda.` These relations may be also proved directly from properties of determinant and trace of a matrix. Cauchy's theorem on determinant of a product of matrices implies that .. math:: \det{\boldsymbol{B}}\ =\ \det{(\boldsymbol{P}^{-1}\boldsymbol{A}\,\boldsymbol{P})}\ = =\ \det{\boldsymbol{P}^{-1}}\cdot\ \det{\boldsymbol{A}}\ \cdot\ \det{\boldsymbol{P}}\ = =\ (\det{\boldsymbol{P}})^{-1}\cdot\ \det{\boldsymbol{A}}\ \cdot\ \det{\boldsymbol{P}}\ =\ \det{\boldsymbol{A}}\,, and reordering cyclicly the factors under the trace symbol, we obtain .. math:: \text{Tr}\,\boldsymbol{B}\ =\ \text{Tr}\,(\boldsymbol{P}^{-1}\boldsymbol{A}\,\boldsymbol{P})\ =\ \text{Tr}\,(\boldsymbol{A}\,\boldsymbol{P}\,\boldsymbol{P}^{-1})\ =\ \text{Tr}\,\boldsymbol{A}\,. Equality of ranks of similar matrices follows from the fact that multiplication of a given matrix by a square non-degenerate matrix (on the left or on the right) does not change its rank: .. math:: \text{rk}\,\boldsymbol{A}\ =\ \text{rk}\,(\boldsymbol{A}\,\boldsymbol{P})\ =\ \text{rk}\,(\boldsymbol{P}^{-1}\boldsymbol{A}\,\boldsymbol{P})\ =\ \text{rk}\,{\boldsymbol{B}}\,. .. .. math:: \text{rz}\,{\boldsymbol{B}}\,=\, \text{rz}\,(\boldsymbol{P}^{-1}\boldsymbol{A}\,\boldsymbol{P})\ =\ \text{rz}\,(\boldsymbol{A}\,\boldsymbol{P})\ =\ \text{rz}\,\boldsymbol{A}\,.