Matrix Diagonalization - Problems ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ **Exercise 1.** Compute :math:`\,\boldsymbol{A}^7\,` for :math:`\,\boldsymbol{A}\ =\ \left[\begin{array}{cc} 1 & 3 \\ 2 & 0 \end{array}\right] \in M_2(Q).` **Hint.** :math:`\,` Write :math:`\,\boldsymbol{A}\ =\ \boldsymbol{P}\,\boldsymbol{D}\,\boldsymbol{P}^{-1}\ ,` where :math:`\,\boldsymbol{D}\ ` is a diagonal matrix. **Exercise 2.** Find a unitary similarity transformation which diagonalizes the matrix :math:`\ \boldsymbol{\sigma}_y\,=\ \left[\begin{array}{cc} 0 & -i \\ i & 0 \end{array}\right]\,.` **Exercise 3.** Show that a unitary similarity transformation preserves Hermitian and unitary matrices.