Unitary Spaces -------------- .. admonition:: Theorem 1. Schwarz inequality in a unitary space :math:`\,V(C):` .. math:: |\,\langle x,y\rangle\,|^2\ \ \leq\ \ \langle x,x\rangle\,\langle y,y\rangle\,,\qquad x,y\in V\,, becomes equality if and only if :math:`\,` the vectors :math:`\,x,y\ ` are linearly dependent: .. math:: |\,\langle x,y\rangle\,|^2\ \,=\ \,\langle x,x\rangle\,\langle y,y\rangle \qquad\Leftrightarrow\qquad x,y\ \ \text{linearly dependent}\,. **Proof.** :math:`\ \Rightarrow\,:\ ` Assume that vectors :math:`\,x,y\ ` are linearly independent. Then :math:`\ y\neq\theta,\ ` and moreover (since every non-trivial linear combination of linearly independent vectors is a non-zero vector) for every :math:`\,\alpha\in C:` .. math:: x-\alpha\,y\ \,=\ \,1\cdot x\,-\,\alpha\cdot y\ \neq\ \theta\,, \langle\,x-\alpha\,y,\,x-\alpha\,y\,\rangle\ >\ 0\,. .. Korzystając, jak w ogólnym dowodzie nierówności Schwarza, z własności iloczynu skalarnego i podstawiając :math:`\ \ \alpha\ =\ \displaystyle\frac{(x,y)^*}{(y,y)}\,,\ ` dochodzimy do ostrej nierówności If we take :math:`\ \,\alpha\ =\ \displaystyle\frac{\langle x,y\rangle^*}{\langle y,y\rangle}\ ` as in the proof of Schwarz inequality, we obtain .. math:: \langle x,x\rangle\,\langle y,y\rangle\ \ >\ \ |\,\langle x,y\rangle\,|^2\,. That is, we get the implication .. math:: x,y\ \ \text{linearly independent} \qquad\Rightarrow\qquad |\,\langle x,y\rangle\,|^2\ \ \neq\ \ \langle x,x\rangle\,\langle y,y\rangle\,, which by contraposition is equivalent to .. math:: |\,\langle x,y\rangle\,|^2\ \ =\ \ \langle x,x\rangle\,\langle y,y\rangle \qquad\Rightarrow\qquad x,y\ \ \text{linearly dependent}\,. :math:`\ \Leftarrow\,:\ ` Assume that vectors :math:`\,x,y\ ` are linearly dependent. Then :math:`\ \,y=\alpha\,x\ ` or :math:`\ \,x=\beta\,y\ \,` for some :math:`\ \alpha,\beta\in C.` In the first case: .. math:: \begin{array}{l} |\,\langle x,y\rangle\,|^2\ \,=\ \,|\,\langle x,\,\alpha\,x\rangle\,|^2\ \,=\ \, |\,\alpha\,\langle x,x\rangle\,|^2\ \,=\ \,|\alpha|^2\ \langle x,x\rangle^2\,, \\ \langle x,x\rangle\,\langle y,y\rangle\ \,=\ \, \langle x,x\rangle\,\langle\alpha\,x,\,\alpha\,x\rangle\ \,=\ \, \langle x,x\rangle\ \alpha^*\alpha\,\langle x,x\rangle\ \,=\ \, |\alpha|^2\ \langle x,x\rangle^2\,, \end{array} an in the second one: .. math:: \begin{array}{l} |\,\langle x,y\rangle\,|^2\ \,=\ \, |\,\langle\beta\,y,\,y\rangle\,|^2\ \,=\ \, |\,\beta^*\,\langle y,y\rangle\,|^2\ \,=\ \,|\beta|^2\ \langle y,y\rangle^2\,, \\ \langle x,x\rangle\,\langle y,y\rangle\ \,=\ \, \langle\beta\,y,\,\beta\,y\rangle\,\langle y,y\rangle\ \,=\ \, \beta^*\beta\ \langle y,y\rangle\ \langle y,y\rangle\,=\ \, |\beta|^2\ \langle y,y\rangle^2\,. \end{array} Hence, in both cases :math:`\ \ |\,\langle x,y\rangle\,|^2\ \,=\ \,\langle x,x\rangle\,\langle y,y\rangle\,.` In this way we proved the remaining implication .. math:: x,y\ \ \text{linearly dependent} \qquad\Rightarrow\qquad |\,\langle x,y\rangle\,|^2\ \ =\ \ \langle x,x\rangle\,\langle y,y\rangle\,. \; Lemma 1. presents necessary and sufficient conditions for a linear operator to be the *zero operator* :math:`\,\mathcal{O},` :math:`\\` which is defined as :math:`\ \mathcal{O}\,x=\theta.` .. .. math:: F\ =\ \mathcal{O}\qquad\Leftrightarrow\qquad Fx=\theta\quad\text{dla wszystkich}\ \ x\in V . .. admonition:: Lemat 1. :math:`\\` Let :math:`\ F\in\text{End}(V)\,` be a linear operator defined on the space :math:`\ V=V(K)\,,\ K\in\{R,C\}\,.\ ` :math:`\\` 0. If :math:`\ F\ ` is defined on a unitary space :math:`\,V(C)\ ` :math:`\\` or a Euclidean space :math:`\,V(R)\,,\ ` then .. math:: F\ =\ \mathcal{O}\qquad\Leftrightarrow\qquad \langle\,x,Fy\,\rangle\,=\,0\quad\text{for all}\ \ x,y\in V\,. 1. If :math:`\ F\ ` is a Hermitian operator: :math:`\ F^+=\,F\,,\ ` :math:`\\` defined on a Euclidean space :math:`\,V(R),\ ` then .. math:: F\ =\ \mathcal{O}\qquad\Leftrightarrow\qquad \langle\,x,Fx\,\rangle\,=\,0\quad\text{for all}\ \ x\in V\,. 2. If :math:`\ F\ ` is defined on a unitary space :math:`\,V(C)\,,\ ` then .. math:: F\ =\ \mathcal{O}\qquad\Leftrightarrow\qquad \langle\,x,Fx\,\rangle\,=\,0\quad\text{for all}\ \ x\in V\,. **Proof.** 0. :math:`\Rightarrow\ :\ ` If :math:`\ F=\mathcal{O}\,,\ \,` then :math:`\ \,\langle\,x,Fy\,\rangle\,=\, \langle\,x,\mathcal{O}\,y\,\rangle\,=\, \langle\,x,\theta\,\rangle\,=\,0\,.` :math:`\Leftarrow\ :\ ` Assume that :math:`\,\langle\,x,Fy\,\rangle\,=\,0\ ` for all :math:`\ x,y\in V\,.` Then for :math:`\ x=Fy\ ` we have :math:`\ \langle\,Fy,Fy\,\rangle=0\,,\ ` and thus :math:`\ Fy=\theta\ ` for all :math:`\ y\in V.\ \\` This means that :math:`\ F=\mathcal{O}\,.` 1. :math:`\Rightarrow\ :\ ` The same proof as in point 0. :math:`\Leftarrow\ :\ ` Assume that :math:`\ \langle x,Fx\rangle\,=\,0\ ` for all :math:`\ x\in V(R).` In particular, if we put :math:`\ x+y\ ` in place of :math:`\ x\ ,\ ` we obtain :math:`\ \,\langle\,x+y,F(x+y)\,\rangle\,=\,0\,,\ \ x,y\in V\,,\ \ ` that is .. math:: :label: x_F_y \langle\,x+y,F(x+y)\,\rangle\,=\,\langle\,x+y,Fx+Fy\,\rangle\,= =\ \langle\,x,Fx\,\rangle\,+\,\langle\,x,Fy\,\rangle\,+\, \langle\,y,Fx\,\rangle\,+\,\langle\,y,Fy\,\rangle\,= =\ \langle\,x,Fy\,\rangle\,+\,\langle\,y,Fx\,\rangle\,=\,0\,,\quad x,y\in V\,. Since :math:`\,F\ ` is a Hermitian operator on a real space, .. math:: :label: y_F_x \langle\,y,Fx\,\rangle\ =\ \langle\,Fy,x\,\rangle\ =\ \langle\,x,Fy\,\rangle\,. Substitution of the equality :eq:`y_F_x` into :eq:`x_F_y` gives :math:`\ \langle\,x,Fy\,\rangle=0\,,\ \ x,y\in V\,,\ \\` which :math:`\,` by the point 0. :math:`\,` is equivalent to :math:`\ F=\mathcal{O}.\\` 2. :math:`\Rightarrow\ :\ ` The same proof as in point 0. :math:`\Leftarrow\ :\ ` Assume that :math:`\ \langle x,Fx\rangle\,=\,0\ ` for all :math:`\ x\in V(C).` We make two substitutions, similar to the one in point 1.: :math:`\ x\rightarrow x+y\ \,` and :math:`\ \,x\rightarrow x+i\,y\,.\ ` Then .. math:: \begin{array}{lcr} & \left\{\ \begin{array}{r} \langle\,x,Fy\,\rangle\,+\,\langle\,y,Fx\,\rangle\,=\,0 \\ \langle\,x,F(iy)\,\rangle\,+\,\langle\,iy,Fx\,\rangle\,=\,0 \end{array}\right. & \quad x,y\in V\,, \\ \\ \text{and thus} & \left\{\ \begin{array}{r} \langle\,x,Fy\,\rangle\,+\,\langle\,y,Fx\,\rangle\,=\,0 \\ \langle\,x,Fy\,\rangle\,-\,\langle\,y,Fx\,\rangle\,=\,0 \end{array}\right. & \quad x,y\in V\,. \end{array} Adding the two last equalities we obtain :math:`\ \langle\,x,Fy\,\rangle=0\,,\ \ x,y\in V\,,\ ` which means that :math:`\,F=\mathcal{O}.\,` Note that in a complex space :math:`V\,` the assumption on the operator :math:`\ F\ ` to be Hermitian is not necessary. :math:`\\` .. admonition:: Corollary. :math:`\\` If one of the two following conditions holds: :math:`\\` 1. :math:`\ F\ ` and :math:`\ G\ ` are Hermitian linear operators: :math:`\ F^+=\,F\,,\ \ G^+=\,G\,,` :math:`\\` defined on a Euclidean space :math:`\,V(R)\,,` :math:`\\` 2. :math:`\ F\ ` and :math:`\ G\ ` are linear operators defined on a unitary space :math:`\,V(C)\,,` :math:`\\` then :math:`\qquad\quad F\ =\ G\quad\Leftrightarrow\quad \langle\,x,Fx\,\rangle\,=\,\langle\,x,G\,x\,\rangle \quad\text{for all}\ \ x\in V\,.` Indeed, if the equality :math:`\ \ \langle\,x,Fx\,\rangle=\langle\,x,G\,x\,\rangle \ ` holds for all :math:`\ x\in V\ \ ` then :math:`\\ \\` :math:`\ \ \langle\,x,(F-G)\,x\,\rangle\,=\,0\,,\ \ x\in V\,,\ ` where in case 1.: :math:`\ \ (F-G)^+=F^+-G^+=F-G\,.\ \\ \\` Hence :math:`\ \ F-G=\mathcal{O}\,,\ \ ` and thus :math:`\ \ F=G.` Now we state and prove an important criterion for a linear operator to be Hermitian: .. admonition:: Theorem 2. If :math:`\,F\ ` is a linear operator defined on a unitary space :math:`\,V(C)\,,\ \,` then .. math:: F=F^+\qquad\Leftrightarrow\qquad \langle\,x,Fx\,\rangle\in R\quad\text{for all}\ \ x\in V\,. **Proof.** :math:`\,` Because :math:`\ \ \langle\,x,F^+x\,\rangle\ =\ \langle\,Fx,x\,\rangle\ =\ \langle\,x,Fx\,\rangle^*\,,\ \ x\in V\,,\ \\` Lemma 1. implies equivalence of the following conditions: .. math:: F\ =\ F^+ \langle\,x,Fx\,\rangle\ =\ \langle\,x,F^+x\,\rangle\,,\ \ x\in V\,, \langle\,x,Fx\,\rangle\ =\ \langle\,x,Fx\,\rangle^*\,, \langle\,x,Fx\,\rangle\in R\,,\ \ x\in V\,. In quantum mechanics, the states of quantum system are represented by vectors from certain unitary space :math:`\,V(C)\ ` of states, and measurable physical quantities of the system correspond to linear operators defined on this space. It is assumed that if :math:`\,\|x\|=1\,,\ ` then the expression :math:`\,\langle\,x,Fx\,\rangle\ ` represents the *mean value* of the quantity :math:`\,F\ ` in the state :math:`\,x.\ ` This postulate makes sense if and only if the expression takes real values for all :math:`\,x\in V.\ ` Such a condition is fulfilled only by Hermitian operators. Hence, only these operators can represent physical quantities. :math:`\\` .. admonition:: Theorem 3. Let :math:`\,U\,` be a linear operator defined on a Euclidean or unitary space :math:`\,V(K),\ K\in\{R,C\}.\ \,` Then the following conditions are equivalent: 1. :math:`\ U^+U=I\,,\ ` where :math:`\,I\ ` is the identity operator: :math:`\ \,Ix=x,\ x\in V\,;` 2. :math:`\ \langle\,Ux,Uy\,\rangle\,=\,\langle x,y\rangle\quad \text{for all}\ \,x,y\in V\,;` 3. :math:`\ \|\,Ux\,\|\,=\,\|x\|\quad\text{for every}\ \,x\in V\,.` **Proof.** Note that .. math:: \begin{array}{l} U^+U=I\quad\Rightarrow\quad\langle\,Ux,Uy\,\rangle\,=\, \langle\,U^+U\,x,y\,\rangle\,=\,\langle\,Ix,y\,\rangle\,=\, \langle x,y\rangle\,,\quad x,y\in V \end{array} and .. math:: \begin{array}{lcl} \langle\,Ux,Uy\,\rangle\,=\,\langle x,y\rangle & \quad\Rightarrow & \quad \|\,Ux\,\|^{\,2}\,=\,\langle\,Ux,Ux\,\rangle\,=\,\langle x,x\rangle\,=\,\|x\|^2 \\ \\ & \quad\Rightarrow & \quad\|\,Ux\,\|\,=\,\|x\|\,,\quad x\in V\,. \end{array} This proves the implications :math:`\ \,\text{1.}\,\Rightarrow\,\text{2.}\ \,` and :math:`\ \,\text{2.}\,\Rightarrow\,\text{3.}\ \,` Now it remains to show that :math:`\ \,\text{3.}\,\Rightarrow\,\text{1.}` .. math:: :nowrap: \begin{eqnarray*} \|\,Ux\,\| & = & \|x\| \\ \|\,Ux\,\|^{\,2} & = & \|x\|^2 \\ \langle\,Ux,Ux\,\rangle & = & \langle x,x\rangle \\ \langle\,x,\,U^+U\,x\,\rangle & = & \langle x,Ix\rangle \end{eqnarray*} The operators :math:`\ U^+U\ \ ` and :math:`\ I\ ` are Hermitian: :math:`\ (U^+U)^+=U^+U,\ \ I^+=I.\ ` Hence, corollary to Lemma 1. implies that both in a Euclidean (real) and unitary (complex) space :math:`\,V\ ` the equality :math:`\,U^+U=I\ ` holds.