Linear Transformations ---------------------- .. admonition:: Theorem 1. :math:`\\` Let :math:`\,V\ ` and :math:`\,W\ ` be vector spaces over a field :math:`\,K,\ \ F\in\text{Hom}(V,W).` :math:`\\` The transformation :math:`\,F\ ` is an injective mapping if and only if .. math:: \text{Ker}\,F\,=\,\{\,\theta_V\}\,,\qquad\text{that is}\qquad\text{def}\,F = 0\,. **Proof and discussion.** A tranformation :math:`\;F\;` is injective :math:`\,` if distinct arguments are mapped to distinct images: .. math:: v_1\neq v_2\qquad\Rightarrow\qquad F(v_1)\neq F(v_2)\,,\qquad v_1,v_2\in V\,. .. Można je zobrazować następującym schematem: |Rys_7| .. .. |Rys_7| image:: /figures/Rys_7.png :align: middle :scale: 68% .. image:: /figures/Rys_7.png :align: center :scale: 70% .. :math:`\;` Image of the space :math:`\;V\;` under the transformation :math:`\;F\;` may be (as in the diagram above) a proper subset of the space :math:`\;W:\ \ \text{Im}\,F\equiv F(V)\subsetneq W\,,\ ` but each element :math:`\;w\in\text{Im}\,F\ ` corresponds to exactly one element :math:`\;v\in V,\ ` the one whose image is :math:`\;w.` .. W szczególności wektor zerowy :math:`\;\theta_W\ ` jest obrazem tylko wektora zerowego :math:`\;\theta_V.` Kernel of the transformation :math:`\;F\in\text{Hom}(V,W)\ ` is by definition a set of those vectors of the space :math:`\;V,\ ` whose image is the zero vector of the space :math:`\;W,\ ` and the defect of :math:`\;F\ ` is equal to dimension of the kernel: .. math:: \text{Ker}\,F\,=\,\{\,v\in V:\ F(v)=\theta_W\}\,,\qquad\text{def}\,F\,=\,\dim\,\text{Ker}\,F\,. :math:`\;\Rightarrow\,:\ ` Assume that :math:`\;F\ ` is injective. Then the zero vector :math:`\;\theta_W\ ` of the space :math:`\;W\ ` is an image only of the zero wector :math:`\;\theta_V,\ ` which means that :math:`\ \,\text{Ker}\,F=\{\,\theta_V\}\ ` and :math:`\ \text{def}\,F=0\,.` :math:`\;\Leftarrow\,:\ ` Assume that :math:`\;F\ ` is not injective. :math:`\\` Then there are two disctinct vectors :math:`\;v_1\ \,` and :math:`\ v_2,\ ` which under the transformation :math:`\;F\ ` have the same image: .. math:: v_1\neq v_2\quad\land\quad F(v_1)\,=\,F(v_2)\,, \qquad\text{that is}\qquad v_1-v_2\neq\theta_V\quad\land\quad F(v_1)-F(v_2)=F(v_1-v_2)=\theta_W.\; Hence, :math:`\ \,\theta_V\neq v_1-v_2\in\text{Ker}\,F,\ \,` and thus :math:`\ \,\text{Ker}\,F\neq\{\,\theta_V\}\ ` and :math:`\ \text{def}\,F\neq 0\,.` By contraposition we deduce that if :math:`\ \text{def}\,F=0,\ ` then :math:`\ F\ ` is injective. .. admonition:: Theorem 2. Tranformation :math:`\,F\in\text{Hom}(V,W)\,` preserves linear independence of any set of vectors of the space :math:`\,V\,` if and only if it is injective **Proof** bases on the :math:`\,` (previous) :math:`\,` theorem, which states that injectivity of the transformation :math:`\ F\ ` is equivalent to vanishing of the defect :math:`\;\Rightarrow\,:\ ` Assume that :math:`\;F\ ` is not injective. Then :math:`\ \text{def}\,F=\dim\,\text{Ker}\,F=k>0.\ ` Let :math:`\,\mathcal{U}=(\,u_1,\,u_2,\,\dots,\,u_k)\ ` be a basis of :math:`\,\text{Ker}\,F.\ ` The set :math:`\,\mathcal{U}\ ` is linearly independent, but its image under the transformation :math:`\,F:` .. math:: F(\mathcal{U})\,=\,(\,Fu_1,\,Fu_2,\,\dots,\,Fu_k\,)\,=\, (\,\theta_W,\,\theta_W,\,\dots,\,\theta_W) is, of course, linearly dependent (actually, it is maximally linearly dependent). Hence, if :math:`\,F\ ` is not injective, then there are sets of vectors whose linear independence is not preserved under the transformation :math:`\,F.\,` On the other hand, if the transformation :math:`\,F\,` preserves linear independence of any set of vectors, then it is injective. :math:`\;\Leftarrow\,:\ ` Assume that :math:`\;F\ ` is injective, :math:`\,` that is :math:`\;\text{Ker}\,F=\{\,\theta_V\}\,.` Consider a linearly independent set :math:`\;(x_1,\,x_2,\,\dots,\,x_r)\ ` of vectors of the space :math:`\,V.\,` :math:`\\` Then :math:`\,` for :math:`\,a_1,\,a_2,\,\dots,\,a_r\in K:` .. math:: \begin{array}{rcc} \text{if} & \qquad & a_1\,Fx_1\,+\,a_2\,Fx_2\,+\,\ldots\,+\,a_r\,Fx_r\,=\,\theta_W\,, \\ \\ \text{then:} & \qquad & F(a_1\,x_1+\,a_2\,x_2+\ldots+\,a_r\,x_r)\,=\,\theta_W\,, \\ & \qquad & a_1\,x_1+a_2\,x_2+\ldots+a_r\,x_r\in\text{Ker}\,F\,, \\ & \qquad & a_1\,x_1\,+a_2\,x_2\,+\ldots+\,a_r\,x_r\,=\,\theta_V\,, \\ & \qquad & a_1=\,a_2=\,\dots\,=\,a_r=0\,. \end{array} Hence, the vectors :math:`\ Fx_1,\,Fx_2,\,\dots,\,Fx_r\ ` are also linearly independent. In this way we proved that for any vectors :math:`\ \,x_1,\,x_2,\,\dots,\,x_r\,\in V\ ` we have the implication (l.i. = linearly independent): .. math:: (\,x_1,\,x_2,\,\dots,\,x_r)\ \ \ \ \text{l.i.} \qquad\Rightarrow\qquad (\,Fx_1,\,Fx_2,\,\dots,\,Fx_r)\ \ \ \ \text{l.i.} which means precisely that :math:`\,F\ ` preserves linear independence of any set of vectors. **Corollaries and discussion.** :math:`\,` Consider an :math:`\,n`-dimensional vector space :math:`\,V(K)\ ` with basis :math:`\,\mathcal{B}=(v_1,\,v_2,\,\dots,\,v_n).\ ` The mapping .. math:: I_{\mathcal{B}}:\quad V\,\ni\, x\,=\,\sum_{i\,=\,1}^n\ a_i\,v_i \quad\rightarrow\quad I_{\mathcal{B}}(x)\,:\,=\, \left[\begin{array}{c} a_1 \\ a_2 \\ \dots \\ a_n \end{array}\right] \,\in\,K^n which transforms a vector :math:`\,x\ ` into a column of coordinates of this vector in basis :math:`\,\mathcal{B}\ ` is an isomorphism of the space :math:`\,V\ ` onto the space :math:`\,K^n,\ ` and thus it is injective. Hence, :math:`\,I_{\mathcal{B}}\ ` preserves linear independence of vectors. The same property holds for the inverse transformation, which is also an isomorphism. Consider a set :math:`\,(x_1,\,x_2,\,\dots,\,x_r)\ ` of vectors, where .. math:: x_j\,=\;\sum_{i\,=\,1}^n\ a_{ij}\,v_i\,, \qquad\text{so that}\qquad I_{\mathcal{B}}(x_j)\,=\, \left[\begin{array}{c} a_{1j} \\ a_{2j} \\ \dots \\ a_{nj} \end{array}\right] \,,\quad j=1,2,\dots,r. The aforementioned property of the isomorphisms :math:`\ I_{\mathcal{B}}\ ` and :math:`\ I_{\mathcal{B}}^{-1}\ ` implies that :math:`\,` (l.i. = linearly independent): .. math:: (\,x_1,\,x_2,\,\dots,\,x_r)\ \ \ \ \text{l.i.} \qquad\Leftrightarrow\qquad \left(\; I_{\mathcal{B}}(x_1),\,I_{\mathcal{B}}(x_2),\,\dots,\,I_{\mathcal{B}}(x_r)\; \right) \ \ \ \ \text{l.i.} .. .. math:: (\,x_1,\,x_2,\,\dots,\,x_r)\ \ -\ \ \text{l.n.} \qquad\Leftrightarrow\qquad \left(\ \ \left[\begin{array}{c} a_{11} \\ a_{21} \\ \dots \\ a_{n1} \end{array}\right],\ \left[\begin{array}{c} a_{12} \\ a_{22} \\ \dots \\ a_{n2} \end{array}\right],\ \dots,\ \left[\begin{array}{c} a_{1r} \\ a_{2r} \\ \dots \\ a_{nr} \end{array}\right]\ \ \right) \ \ -\ \ \text{l.n.} .. Można to zapisać jako .. admonition:: Corollary 1a. Vectors from an :math:`\,n`-dimensional vector space :math:`\,V(K)\ ` are linearly independent if and only if columns of their coordinates :math:`\,` (as vectors of the space :math:`\,K^n`) :math:`\,` are linearly independent in every basis of the space :math:`\,V.` Since linear dependence is a negation of linear independence, we may also write :math:`\,` (l.d. = linearly dependent): .. math:: (\,x_1,\,x_2,\,\dots,\,x_r)\ \ \ \ \text{l.d.} \qquad\Leftrightarrow\qquad \left(\; I_{\mathcal{B}}(x_1),\,I_{\mathcal{B}}(x_2),\,\dots,\,I_{\mathcal{B}}(x_r)\; \right) \ \ \ \ \text{l.d.} .. admonition:: Corollary 1b. Vectors from an :math:`\,n`-dimensional vector space :math:`\,V(K)\ ` are linearly dependent if and only if columns of their coordinates :math:`\,` (as vectors of the space :math:`\,K^n`) :math:`\,` are linearly dependent in every basis of the space :math:`\,V.` If :math:`\,r=n,\ ` then the columns of coordinates form a square matrix .. math:: \boldsymbol{A}\ =\ [\,a_{ij}\,]_{n\times n}\ =\ [\,I_{\mathcal{B}}(x_1)\,|\,I_{\mathcal{B}}(x_2)\,|\,\dots\,|\,I_{\mathcal{B}}(x_n)\,]\,. An element :math:`\,a_{ij}\ ` of this matrix is the :math:`\,i`-th coordinate of the :math:`\,j`-th vector from the set :math:`\,(x_1,\,x_2,\,\dots,\,x_n).\ \\` Properties of determinant imply .. math:: (\,x_1,\,x_2,\,\dots,\,x_n)\ \ \ \ \text{l.i.} \qquad\Leftrightarrow\qquad \det\,\boldsymbol{A}\neq 0\,. .. Biorąc pod uwagę fakt, że w :math:`\,n`-wymiarowej przestrzeni wektorowej każdy liniowo niezależny układ :math:`\,n\ ` wektorów jest bazą, można sformułować .. admonition:: Corollary 2. In an :math:`\,n`-dimensional vector space :math:`\,V(K)\ ` a set of :math:`\,n\ ` vectors is linearly independent if and only if the determinant of the matrix formed from the coordinates of these vectors is non-zero. Taking into account that in an :math:`\,n`-dimensional vector space every set of :math:`\,n\ ` linearly independent vectors comprises a basis, :math:`\,` we may formulate .. admonition:: Corollary 3. In an :math:`\,n`-dimensional vector space :math:`\,V(K)\ ` a set of :math:`\,n\ ` vectors compises a basis of this space if and only if the determinant of the matrix formed from the coordinates of these vectors is non-zero.