Group of Permutations --------------------- Definition and Notation ~~~~~~~~~~~~~~~~~~~~~~~ A :math:`\,` *permutation* :math:`\,` of a finite set :math:`\,X=\{1,2,\dots,n\}\,` is a (bijective) mapping from :math:`\,X\,` onto itself. The set of all permutations of the set :math:`\,\{1,2,\dots,n\}\,` is denoted by :math:`\,S_n\,.` A convenient way of representing a permutation is the two-line notation: .. math:: \sigma\ =\ \left(\begin{array}{cccc} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{array}\right)\,, where in the upper row are listed arguments, and in the lower row the corresponding images. Arguments may appear in any order, provided that the respective images are attached to them. For example, the following permutation can be written down in 24 equivalent forms: .. math:: \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{array}\right)\ =\ \left(\begin{array}{cccc} 2 & 3 & 4 & 1 \\ 1 & 2 & 4 & 3 \end{array}\right)\ =\ \left(\begin{array}{cccc} 4 & 1 & 2 & 3 \\ 4 & 3 & 1 & 2 \end{array}\right)\ =\ \dots Permutations can be composed as mappings: :math:`\\` if :math:`\,\rho,\sigma\in S_n,\ \,` then the composition :math:`\,\rho\circ\sigma\,` is determined by .. math:: :label: compose (\rho\circ\sigma)(k)\ =\ \rho\,[\,\sigma(k)\,]\,, \qquad k\in\{1,2,\dots,n\}\,. In the two-line notation the rule reads: .. math:: \rho\circ\sigma\ =\ \left(\begin{array}{cccc} 1 & 2 & \dots & n \\ \rho(1) & \rho(2) & \dots & \rho(n) \end{array}\right)\ \circ\ \left(\begin{array}{cccc} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{array}\right)\ = =\ \left(\begin{array}{cccc} 1 & 2 & \dots & n \\ \rho\,[\sigma(1)] & \rho\,[\sigma(2)] & \dots & \rho\,[\sigma(n)] \end{array}\right)\,. It's worth pointing out the order of operations: :math:`\\` for each number :math:`\,k\in\{1,2,\dots,n\}\,` we first determine the image of :math:`\,k\,` under permutation :math:`\,\sigma,\ ` :math:`\\` and then the image of the obtained result under permutation :math:`\,\rho.\ ` For example, .. math:: \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\ 4 & 1 & 3 & 5 & 2 \end{array}\right)\ \circ\ \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 1 & 3 & 4 \end{array}\right)\ =\ \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 4 & 3 & 5 \end{array}\right)\,. \; **Theorem 1.** :math:`\,` The structure :math:`\ \left(\,S_n,\,\circ\,\right)\ ` is a group :math:`\ (n\in N).` **Proof.** :math:`\,` We shall check the consecutive axioms in the definition of a group. 0. | :math:`\,` A composition of two permutations in :math:`\,S_n\,` is also a permutation belonging to :math:`\,S_n.\,` | :math:`\,` Therefore, the composition :math:`\ \circ\ ` is an internal operation in the set :math:`\,S_n.` 1. | :math:`\,` The composition of permutations, as composition of mappings, is associative. | :math:`\,` Indeed, :math:`\,` if :math:`\,\rho,\sigma,\tau\in S_n,\ ` then for each :math:`\,k\in\{1,2,\dots,n\}:` .. math:: \left[\,\rho\circ (\sigma\circ\tau )\,\right]\,(k) \ =\ \rho\,\left[\, (\sigma\circ\tau )(k)\,\right] \ =\ \rho\,\{\,\sigma\,\left[\,\tau(k)\,\right]\,\}\,, \left[\, (\rho\circ\sigma )\circ\tau\,\right]\,(k) \ =\ (\rho\circ\sigma )\,\left[\,\tau(k)\,\right] \ =\ \rho\,\{\,\sigma\,\left[\,\tau(k)\,\right]\,\}\,. :math:`\,` Consequently, :math:`\qquad\quad\rho\circ (\sigma\circ\tau )\ =\ ( \rho\circ\sigma )\circ\tau\,,\qquad\forall\ \ \rho,\sigma,\tau\in S_n\,.` 2. | :math:`\,` The neutral element for composition is the identity permutation id, | :math:`\,` which maps every element of the set to itself: .. math:: \text{id}\ =\ \left(\begin{array}{cccccc} 1 & 2 & 3 & \dots & n \\ 1 & 2 & 3 & \dots & n \end{array}\right)\,. :math:`\,` Indeed, it's easy to verify that :math:`\quad\sigma\circ\text{id}\ =\ \text{id}\circ\sigma\ =\ \sigma\,,\quad\forall\ \sigma\in S_n.` 3. Every permutation :math:`\ \sigma\in S_n\ ` has an inverse :math:`\ \sigma^{-1}\in S_n\ ` :math:`\\` such that :math:`\ \ \sigma\circ\sigma^{-1}\ =\ \,\sigma^{-1}\circ\,\sigma\ =\ \text{id}\,.\ ` Expressly, .. math:: \text{if}\quad \sigma\ =\ \left(\begin{array}{cccccc} 1 & 2 & 3 & \dots & n \\ s_1 & s_2 & s_3 & \dots & s_n \end{array}\right)\,, \quad\text{then}\quad\ \sigma^{-1}\ =\ \left(\begin{array}{cccccc} s_1 & s_2 & s_3 & \dots & s_n \\ 1 & 2 & 3 & \dots & n \end{array}\right)\,. \quad\bullet The group :math:`\ S_n\ ` of permutations is called the *symmetric group*. :math:`\\` It has :math:`\,n!\,` elements, :math:`\,` and for :math:`\,n>2\,` is non-abelian. In the following we shall omit the symbol :math:`\ \circ:` :math:`\ \ \rho\circ\sigma\ \rightarrow\ \rho\,\sigma\,,\ ` :math:`\\` and a composition of permutations shall be called a product of them. Cyclic Permutations and Parity ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ A permutation :math:`\ \sigma\in S_n\ ` is :math:`\,` a :math:`\,` *cycle of length* :math:`\,k\ ` (shortly: a :math:`\,k`-*cycle*) :math:`\,` when :math:`\\` there exists a subset :math:`\ Y=\{a_1,a_2,\dots,a_k\}\ ` of the set :math:`\,X=\{1,2,\dots,n\},\ ` such that .. math:: \sigma(a_1)=a_2,\quad\sigma(a_2)=a_3,\quad\dots,\quad \sigma(a_{k-1})=a_k,\quad\sigma(a_k)=a_1, \text{and}\qquad\sigma(i)=i\qquad\text{for}\qquad i\notin Y\,. The aforementioned subset :math:`\,Y\,` is called :math:`\,` the :math:`\,` *orbit* :math:`\,` of the cycle. .. Such a cycle is written as :math:`\ \sigma=(a_1,a_2,\dots,a_k),\ ` discarding elements which are mapped to themselves. Thus, in the full notation: .. Discarding elements which are mapped to themselves, a a :math:`\,k`-cycle is written in the one-line fashion as :math:`\ \sigma=(a_1,a_2,\dots,a_k).\ ` Thus, in the full notation: Elements mapped to themselves being omitted, a :math:`\,k`-cycle is written in the one-line fashion as :math:`\ \sigma=(a_1,a_2,\dots,a_k).\ ` Thus, using the two-line notation, a :math:`\,k`-cycle reads .. math:: S_n\,\ni\,(a_1,a_2,\dots,a_k)\ =\ \left(\begin{array}{ccccccccc} a_1 & a_2 & \dots & a_{k-1} & a_k & a_{k+1} & \dots & a_{n-1} & a_n \\ a_2 & a_3 & \dots & a_k & a_1 & a_{k+1} & \dots & a_{n-1} & a_n \end{array}\right)\,. Example: :math:`\quad \left(\begin{array}{cccccc} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 6 & 4 & 2 & 5 & 3 \end{array}\right)\ =\ \left(\begin{array}{cccccc} 2 & 6 & 3 & 4 & 1 & 5 \\ 6 & 3 & 4 & 2 & 1 & 5 \end{array}\right)\ =\ (2,6,3,4)\,.` Instead, the permutation :math:`\quad \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 2 & 5 & 4 \end{array}\right)\ =\ \left(\begin{array}{ccccc} 1 & 3 & 2 & 4 & 5 \\ 3 & 2 & 1 & 5 & 4 \end{array}\right)\quad` is not a cycle. The one-line cycle notation is not unique. A :math:`\,k`-cycle may be written in :math:`\,k\,` different ways, depending on the choice of the initial element :math:`\,a_1\,:` .. math:: (2,6,3,4)\ =\ (6,3,4,2)\ =\ (3,4,2,6)\ =\ (4,2,6,3)\,. A cycle of length 1 is the identity permutation: .. math:: S_n\,\ni\,\text{id}\ =\ (1)\ =\ (2)\ =\ \dots\ =\ (n)\,. A cycle of length 2 (i.e. with a 2-element orbit) is called :math:`\,` a :math:`\,` *transposition*. :math:`\,` An example is .. math:: S_6\,\ni\,\tau_{25}\ =\ (2,5)\ =\ \left(\begin{array}{cccccc} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 5 & 3 & 4 & 2 & 6 \end{array}\right)\,. Two cycles, :math:`\ \rho=(a_1,a_2,\dots,a_k),\ \sigma=(b_1,b_2,\dots,b_l)\in S_n\,,\ ` are *disjoint* when their orbits :math:`\ Y_{\rho}=\{a_1,a_2,\dots,a_k\},` :math:`\ Y_{\sigma}=\{b_1,b_2,\dots,b_l\}\ ` are disjoint sets: :math:`\ Y_{\rho}\cap Y_{\sigma}=\emptyset\,.\ \,` For example, the cycles :math:`\ (3,6,2)\ ` and :math:`\ (1,7,4,5)\ ` in the group :math:`\ S_7\ ` are disjoint, whereas :math:`\ (4,2,5,1)\ ` and :math:`\ (3,1,6,2)\ ` are not. It's worth to notice that a product of two disjoint cycles is commutative: :math:`\ \rho\,\sigma=\sigma\,\rho\,.` **Theorem 2.** :math:`\\` Every permutation can be expressed as a product of disjoint cycles. :math:`\\` The expression is unique up to the order of (commuting) factors. [3]_ Example: :math:`\quad\left(\begin{array}{cccccccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 6 & 2 & 4 & 3 & 5 & 9 & 8 & 10 & 1 & 7 \end{array}\right)\ =\ (1,6,9)(3,4)(7,8,10)\,.` **Proposition 1.** :math:`\\` A :math:`\,k`-cycle can be decomposed into the product of :math:`\ k-1\ ` transpositions :math:`\ (k\geq 2):` .. math:: (a_1,a_2,a_3,\dots,a_{k-1},a_k)\ \,=\ \, (a_1,a_k)(a_1,a_{k-1})\ \dots\ (a_1,a_3)(a_1,a_2)\,. **Note:** :math:`\,` The order of factors on the right-hand side is relevant! **Corollary 1.** :math:`\\` Every permutation :math:`\ \sigma\in S_n,\ n\geq 2,\ ` can be represented as a product of transpositions :math:`\\` (such representation is not unique). :math:`\ ` For example, .. math:: \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 4 & 3 & 1 \end{array}\right)\ =\ (1,2,5)(3,4)\ = =\ (1,5)(1,2)(3,4)\ =\ (1,3)(3,4)(4,5)(2,4)(1,4)\,. **Proposition 2.** :math:`\,` Every transposition :math:`\,\tau\in S_n,\ n\geq 2,\ ` may be written as a product of an odd number of adjacent transpositions. Namely, for :math:`\,i