Definitions and Terminology --------------------------- We start with a general definition of the homomorphism of algebraic structures. Suppose we have two sets, each with a binary operation: :math:`\,(A,\,\bot\,)\ ` and :math:`\,(A',\,\circ\,).` A map :math:`\ f:\ A\,\rightarrow\,A'\ \,` is :math:`\,` a :math:`\,` *homomorphism*, when it preserves the operations in the sense that the image of a composition of two elements of :math:`\,A\,` is equal to the composition (in the set :math:`\,A'\,`) of their images: .. math:: :label: hom f(a_1\,\bot\;a_2)\ =\ f(a_1)\,\circ\,f(a_2)\,, \qquad\forall\ a_1,a_2\in A\,. In the case of several internal operations defined in the two sets, the condition :eq:`hom` should be fulfilled for each pair of corresponding operations. Homomorphisms and isomorphisms (i.e. bijective homomorphisms) of groups, rings and fields are defined just that way. A vector space contains the external operation of multiplying vectors by scalars. The properly modified definition reads as follows. .. admonition:: Definition. | Let :math:`\ V\ ` and :math:`\ W\ ` be two vector spaces over (the same) field :math:`\,K.` | The map :math:`\ \,F:\ V\rightarrow W\ \,` is the :math:`\,` *homomorphism* :math:`\,` :math:`\,` (*linear transformation*) :math:`\,` | of the space :math:`\ V\ ` into the space :math:`\ W,\ \ ` when it is simultaneously: 1. | additive: :math:`\quad F(v_1+v_2)\ =\ F(v_1)+F(v_2)\,,\qquad\forall\ \ v_1,v_2\in V\ ` | (the image of a sum of two vectors equals the sum of their images) 2. | homogeneous: :math:`\quad F(a\,v)\,=\,a\,F(v)\,, \qquad\forall\ a\in K,\ \forall\ v\in V` | (multiplying a vector :math:`\,v\,` by a number :math:`\,\alpha\,` multiplies by :math:`\,\alpha\,` the image of :math:`\,v`). The conditions of additivity and homogeneity can be encapsulated in the single equation: .. math:: :label: hom_suc F(a_1\,v_1+a_1\,v_2)\ \,=\ \,a_1\,F(v_1)\,+\,a_2\,F(v_2)\,,\qquad \forall\ \ a_1,a_2\in K,\ \forall\ \ v_1,v_2\in V\,. (the image of a linear combination of two vectors equals the same combination of their images). By induction, one may generalize Eq. :eq:`hom_suc` to the case of a linear combination of any finite number of vectors. The addition and scalar multiplication of mappings being defined in a natural way, the set of all linear transformations of the vector space :math:`\ V\ ` into the space :math:`\ W\ ` turns out to be a vector space itself. To deal with this matter in details, we use the following notation: :math:`\text{Map}(V,W)\ ` - :math:`\,` the set of all maps from the vector space :math:`\,V\ ` to the vector space :math:`\,W;` :math:`\text{Hom}(V,W)\ ` - :math:`\,` the set of all *linear* maps (homomorphisms) from :math:`\,V\ ` into :math:`\,W.` Verifying the postulates in the definition of vector space, one may prove .. admonition:: Lemma 1. :math:`\\` If :math:`\ V\ ` and :math:`\ W\ ` are vector spaces over the field :math:`\,K,\ ` then the set :math:`\ \text{Map}(V,W)\ ` :math:`\\` with the operations of addition and scalar multiplication: .. math:: :label: oper_hom \begin{array}{lcl} (F_1+F_2)(v)\ :\,=\ F_1(v)\,+\,F_2(v) & \qquad & \forall\ F_1,F_2,F\in \text{Map}(V,W)\,, \\ (a\,F)(v)\ :\,=\ a\,F(v) & \qquad & \forall\ \,a\in K,\ \ \forall\ v\in V\,, \end{array} is also a vector space over the field :math:`\,K.` (the statement remains true for a set :math:`\ \text{Map}(X,W),\ ` where :math:`\ X\ ` is any given set). It's also easy to justify .. admonition:: Lemma 2. :math:`\\` If :math:`\ V\ ` and :math:`\ W\ ` are vector spaces over the field :math:`\,K,\ ` then the set :math:`\text{Hom}(V,W)\ ` :math:`\\` is closed with respect to the addition and the scalar multiplication of mappings. :math:`\\` Namely, for any :math:`\ F_1,F_2\in\text{Map}(V,W),\ a\in K:` .. math:: F_1,\,F_2\in \text{Hom}(V,W)\quad\Rightarrow\quad \left[\ (F_1+F_2)\in\text{Hom}(V,W) \ \ \wedge\ \ (a\,F_1)\in\text{Hom}(V,W)\ \right]\,. Therefore, the criterion for a subset of a vector space to be a subspace leads to .. admonition:: Theorem 1. :math:`\\` Let :math:`\ V\ ` and :math:`\ W\ ` be vector spaces over a field :math:`\,K.\ ` Then the set :math:`\text{Hom}(V,W)\ ` of linear transformations of the space :math:`\ V\ ` into :math:`\ W\ ` is also a vector space over :math:`\,K;\ ` moreover, it is a subspace of the vector space :math:`\text{Map}(V,W)\ ` of all transformations of :math:`\ V\ ` into :math:`\ W:` .. math:: \text{Hom}(V,W)\ <\ \text{Map}(V,W)\,. A bijective linear transformation of a space :math:`\ V\ ` into a space :math:`\ W\ ` is named an :math:`\,` *isomorphism* :math:`\,` of these vector spaces. The collection of all such isomorphisms is denoted by :math:`\,\text{Iso}(V,W).\ ` :math:`\\` When :math:`\ \text{Iso}(V,W)\ne\emptyset,\ ` one says that the vector spaces :math:`\ V\ ` and :math:`\ W\ ` are :math:`\,` *isomorphic*: :math:`\ V\simeq W.` A linear transformation of the vector space :math:`\ V\ ` into itself is called an :math:`\,` *endomorphism* :math:`\,` or a :math:`\,` *linear operator*. :math:`\,` Isomorphism of a space onto itself, i.e. a bijective endomorphism, is called :math:`\,` *automorphism*. :math:`\,` The collections of such transformations are denoted by .. math:: \text{End}(V)\ :\,=\ \text{Hom}(V,V)\,,\qquad \text{Aut}(V)\ :\,=\ \text{Iso}(V,V)\,. The relations between these notions can be charted by the following scheme, in which the horizontal right-arrows symbolize the condition of bijectivity, whereas the vertical down-arrows designate the substitution :math:`\ W=V:` .. math:: \left.\begin{array}{ccc} \text{homo-} & \longrightarrow & \text{iso-} \\ \\ \downarrow & & \downarrow \\ \\ \text{endo-} & \longrightarrow & \text{auto-} \end{array}\quad\right\} \quad\text{-morphism}\,. In addition to be added and scalar multiplied (Eqs. :eq:`oper_hom`), :math:`\,` the linear operators in :math:`\ \text{End}(V)\ ` can be composed according to the rule .. math:: (F\circ G)(v)\ \,:\,=\ \, F\,[\,G(v)\,]\,,\qquad F,\,G\in\text{End}(V),\ \ \forall\ v\in V\,. Checking up the postulates in the definition of algebra, one may validate .. admonition:: Theorem 2. :math:`\,` Let :math:`\ V\ ` be a linear space over the field :math:`\ K.` Then the set :math:`\ \text{End}(V)\ ` of all linear operators defined on :math:`\ V,\ ` together with the operations of adding, scalar multiplying and composing the operators, :math:`\,` is a non-commutative algebra over the field :math:`\ K.` .. Przekształcenie liniowe :math:`F: V\rightarrow W` nazywa się :math:`\,` *epimorfizmem liniowym*, :math:`\,` gdy jest surjekcją, tj. odwzorowaniem przestrzeni :math:`V\,` *na* przestrzeń :math:`\,W\,` (zbiorem wartości jest cała przestrzeń :math:`\,W`). Natomiast :math:`\,` *monomorfizm liniowy* :math:`\,` jest z definicji przekształceniem liniowym różnowartościowym, czyli injekcją (różnym argumentom odpowiadają różne obrazy). .. Izomorfizm przestrzeni wektorowych, jako bijekcja, jest jednocześnie epimorfizmem i monomorfizmem. If :math:`\ V\ ` is a vector space over the field :math:`\ K,\ ` then the linear transformation :math:`\ f:\ V\rightarrow K,\ ` where the field :math:`\ K\equiv K^1\ ` is considered as the one-dimensional vector space over :math:`\,K,\ ` is called :math:`\,` the :math:`\,` *linear functional*. The set :math:`\ V^\ast :\,=\ \text{Hom}(V,K)\ ` of all linear functionals defined on the space :math:`\, V,\ \,` is the :math:`\,` *dual space* :math:`\,` of :math:`\ \,V.\ `