Kernel, Image and the Rank-Nullity Theorem ------------------------------------------ Let :math:`\,V\,` and :math:`\,W\,` be vector spaces over the field :math:`\,K.` .. admonition:: Definition. :math:`\\` The *kernel* of a linear transformation :math:`\,F\in\text{Hom}(V,W)\ ` is the set of all elements of the space :math:`\,V,\ ` which are mapped into the zero vector of the space :math:`\,W:` .. math:: \text{Ker}\,F\ :\,=\ \{\,v\in V:\ F(v)=\theta_W\}\,. .. Equivalently, the kernel of a homomorphism :math:`\,F\in\text{Hom}(V,W)\ ` may be defined as the preimage (inverse image) of the one-element set consisting of the zero vector of the space :math:`\,W:` :math:`\\` :math:`\,\ \text{Ker}\,F\,=\,F^{-1}\{\,\theta_W\}.` In other words, the kernel of a homomorphism :math:`\,F\in\text{Hom}(V,W)\ ` is the preimage (inverse image) of the one-element set consisting of the zero vector of the space :math:`\,W: \,\text{Ker}\,F\,=\,F^{-1}\{\,\theta_W\}.` .. admonition:: Definition. :math:`\\` The *image* of a linear transformation :math:`\,F\in\text{Hom}(V,W)\ ` is the image of the space :math:`\,V\ ` under the map :math:`\,F,\ \ ` i.e. :math:`\,` it is the set of values of the map :math:`\,F:` .. math:: \text{Im}\,F\ :\,=\ F(V)\ \equiv\ \{\,F(v):\ v\in V\,\}\,. Obviously, :math:`\ \,\text{Ker}\,F\subset V,\ \,\text{Im}\,F\subset W.\ ` :math:`\,` Moreover .. admonition:: Theorem 6. :math:`\\` The kernel of a linear transformation :math:`\,F\in\text{Hom}(V,W)\ ` is a subspace of the vector space :math:`\,V,\ ` whereas the image of :math:`\,F\,` is a subspace of the vector space :math:`\,W:` .. math:: \text{Ker}\,F < V,\qquad\text{Im}\,F < W. The **Proof** is based on the following criterion for a subspace (see Chapter 1.). A subset :math:`\,X\,` of the vector space :math:`\,V\,` is a subspace of :math:`\,V\,` if, and only if, :math:`\,X\,` is closed under vector addition and scalar multiplication, that is iff for any two vectors from :math:`\,X,\,` every linear combination of these vectors also belongs to :math:`\,X.` So let's assume that :math:`\ v_1,\,v_2\in\text{Ker}\,F:\ ` :math:`\ F(v_1)=F(v_2)=\theta_W\,.` Then :math:`\ \ F(a_1\,v_1+a_2\,v_2)\ =\ a_1\,F(v_1)+a_2\,F(v_2)\ =\ \theta_W\,,` :math:`\\` meaning that :math:`\ \,a_1\,v_1+a_2\,v_2\in\text{Ker}\,F\ \,` :math:`\ \forall\ \ a_1,a_2\in K.` :math:`\,` Thus we have proved that :math:`\ \text{Ker}\,F < V.` Now let :math:`\,\ w_1,\,w_2\in\text{Im}\,F.\ \ ` Then :math:`\ \ w_1=F(v_1),\ \,w_2=F(v_2)\,,\ \,` :math:`\ \exists\ v_1,\ \exists\ v_2\in V.` Then for :math:`\ \forall\ \ b_1,b_2\in K:\ ` :math:`\ b_1\,w_1+\,b_2\,w_2\ =\ b_1\,F(v_1)\,+\,b_2\,F(v_2)\ =\ F(b_1\,v_1+\,b_2\,v_2)\in\text{Im}\,F.\ ` This proves that :math:`\ \ \text{Im}\,F < W.\quad\bullet` The :math:`\,\text{Ker}\,F\ ` and :math:`\,\text{Im}\,F\ ` being vector (sub)spaces, the following two definitions are sensible: .. math:: \begin{array}{rclcl} \text{nul}\ F & :\,= & \dim\,\text{Ker}\,F & \qquad\quad & \text{nullity of the homomorphism}\ F \\ \text{rk}\ F & :\,= & \dim\,\text{Im}\,F & \qquad\quad & \text{rank of the homomorphism}\ F \end{array} .. admonition:: Theorem 7. :math:`\ ` The Rank-Nullity Theorem. :math:`\\` If :math:`\,F\ ` is a linear transformation from the vector space :math:`\,V\ ` to the vector space :math:`\,W,\ ` then .. math:: :label: Rk_Nul \text{nul}\ F\ +\ \text{rk}\ F\ =\ \dim\,V\,. **Proof.** :math:`\,` Assume that :math:`\ \text{nul}\,F = k,\ ` while :math:`\ U = \{u_1,\,u_2,\,\dots,\,u_k\}\ ` is a basis of :math:`\ \text{Ker}\,F.\ ` :math:`\\` Since :math:`\,\text{Ker}\,F < V,\ \,` the set :math:`\,U\,` can be extended to the basis :math:`\,B\,` of the whole space :math:`\,V:` .. math:: B\ \,=\ \,U\,\cup\,Y\ \,=\ \, \{\,u_1,\,u_2,\,\dots,\,u_k,\ y_1,\,y_2,\,\dots,\,y_r\,\}\,. Within this notation :math:`\ \dim\,V=\,k+r,\ ` where :math:`\,k = \text{nul}\,F.\ ` To prove the thesis :eq:`Rk_Nul`, it is enough to show that :math:`\, r = \text{rk}\ F.\ ` For that purpose we shall demonstrate that the image of the set :math:`\,Y:` .. math:: :label: set_FY F(Y)\ :\,=\ \{\,Fy_1,\,Fy_2,\,\dots,\,Fy_r\,\} is a basis of :math:`\,\text{Im}\,F.\ \,` This shall be accomplished in two steps. 1.) To show that the set :eq:`set_FY` is linearly independent, we assume that .. math:: c_1\,Fy_1\,+\;c_2\,Fy_2\,+\;\ldots\;+\;c_r\,Fy_r\ =\ \theta_W\,,\qquad c_1,\,c_2,\,\ldots,\,c_r\,\in\,K. Due to linear independence of vectors in the basis :math:`\,B,\,` we obtain .. math:: F\left(c_1\,y_1\,+\;c_2\,y_2\,+\;\ldots\;+\;c_r\,y_r\right)\ =\ \theta_W\,, c_1\,y_1\,+\;c_2\,y_2\,+\;\ldots\;+\;c_r\,y_r\ \in\ \text{Ker}\,F\,, c_1\,y_1\,+\;c_2\,y_2\,+\;\ldots\;+\;c_r\,y_r\ =\ -\ b_1\,u_1\,-\;b_2\,u_2\,+\;\ldots\;-\ b_k\,u_k\,, b_1\,u_1\,+\;b_2\,u_2\,+\;\ldots\;+\;b_k\,u_k\ +\ c_1\,y_1\,+\;c_2\,y_2\,+\;\ldots\;+\;c_r\,y_r\ =\ \theta_V\,, b_1=\,b_2=\;\ldots\;=\;b_k\,=\;c_1=\,c_2=\;\ldots\;=\;c_r\ =\ 0\,. Thus we have evidenced the implication .. math:: c_1\,Fy_1\,+\;c_2\,Fy_2\,+\;\ldots\;+\;c_r\,Fy_r\ =\ \theta_W \quad\Rightarrow\quad c_1\,=\,c_2\,=\,\ldots\,=\,c_r\ =\ 0\,, which expresses the linear independence of the set :math:`\ F(Y)`. 2.) To show that the set :math:`\ F(Y)\ ` spans :math:`\,\text{Im}\,F,\ ` we consider an arbitrary vector :math:`\,w\in \text{Im}\,F:` .. math:: w\ =\ F(v),\quad v=b_1\,u_1+\;\ldots\;+\;b_k\,u_k\;+\ c_1\,y_1+\;\ldots\;+\;c_r\,y_r\,. Taking into account that :math:`\ \,Fu_i=\theta_W,\ \,i=1,2,\dots,k,\ \,` we get .. math:: :nowrap: \begin{eqnarray*} w & = & F\,(b_1\,u_1+\;\ldots\;+\;b_k\,u_k\;+\ c_1\,y_1+\;\ldots\;+\;c_r\,y_r) \\ & = & b_1\,Fu_1+\;\ldots\;+\;b_k\,Fu_k\;+\ c_1\,Fy_1+\;\ldots\;+\;c_r\,Fy_r \\ & = & c_1\,Fy_1+\;\ldots\;+\;c_r\,Fy_r\,\in\,L(Fy_1,\dots,Fy_r)\,. \end{eqnarray*} Thus :math:`\ \text{Im}\,F\subset L(Fy_1,\dots,Fy_r).\ ` On the other hand, :math:`\ \text{Im}\,F\supset L(Fy_1,\dots,Fy_r),\ ` :math:`\\` whereby :math:`\ \text{Im}\,F=L(Fy_1,\dots,Fy_r)=L\left(F(Y)\right).` As a linearly independent spanning set, :math:`\ F(Y)\ ` is a basis of :math:`\ \text{Im}\,F,\ \ ` and :math:`\ r\,=\,\text{rk}\ F.` :math:`\ \ \bullet` The following Criterion for the Isomorphism of Vector Spaces is based on the above-mentioned Theorem 7.: .. admonition:: Theorem 8. :math:`\\` Any two finite-dimensional vector spaces over a field :math:`\,K\ ` are isomorphic :math:`\\` if, and only if, they are of the same dimension: .. math:: V\,\simeq\,W\qquad\Leftrightarrow\qquad\dim\,V\,=\ \dim\,W\,. **Proof.** :math:`\Rightarrow\ :\ ` We assume that the spaces :math:`\ V\ ` and :math:`\ W\ ` are isomorphic: :math:`\ V\simeq W,\ \,` that is :math:`\ \text{Iso}(V,W)\neq\emptyset.` Let :math:`\ F\ ` be an isomorphism of the space :math:`\,V\,` onto the space :math:`\,W.\ ` The map :math:`\ F\ ` being bijective, :math:`\\` the preimage of each element of :math:`\,W\,` is a set containing exactly one element of :math:`\ V.\ ` :math:`\\` In particular, the zero vector :math:`\ \theta_W\ ` is the image of the zero vector :math:`\ \theta_V\ ` only, :math:`\,` meaning that :math:`\ \text{nul}\,F=\,\dim\,\text{Ker}\,F=0.` But :math:`\ F\ ` is also surjective: :math:`\ F(V)=\text{Im}\,F=W,\ \,` wherefrom :math:`\ \,\text{rk}\ F=\dim\,\text{Im}\,F=\,\dim\,W.\ ` Using Theorem 7., :math:`\,` we obtain .. math:: \dim\,V\ =\ \,\text{nul}\,F\ +\ \,\text{rk}\,F\ =\ 0\ +\ \dim\,W\ =\ \dim\,W. :math:`\Leftarrow\ :\ ` Let :math:`\ \,\dim\,V=\,\dim\,W=n.` Then every basis of :math:`\,V,\,` as well as every basis of :math:`\,W,\,` has :math:`\,n\ ` elements. Suppose that the set :math:`\ B = \{\,v_1,v_2,\,\dots,\,v_n\,\}\ ` is a basis of the space :math:`\,V,\ ` whereas :math:`\ C = \{\,w_1,w_2,\,\dots,\,w_n\,\}\ ` is a basis of the space :math:`\,W.\ ` On the grounds of the Corollary of Theorem 5., we define the linear transformation :math:`\,F:\,V\rightarrow W\ ` by giving its values on vectors in :math:`\ B:` .. math:: :label: iso F(v_i)\ :\,=\ w_i\,,\qquad i=1,2,\dots,n. Then the image of an arbitrary vector :math:`\ \,v = \displaystyle\sum_{i\,=\,1}^n\ a_i\,v_i \in V\ \,` is given by .. math:: :label: iso_1 F\left(\,\sum_{i\,=\,1}^n\ a_i\,v_i\right)\ \ =\ \ \sum_{i\,=\,1}^n\ a_i\,Fv_i\ \ =\ \ \sum_{i\,=\,1}^n\ a_i\,w_i\,. If :math:`\,w=F(v),\ ` where :math:`\ v\in V,\ w\in W,\ ` then the coordinates of :math:`\,w\,` in the basis :math:`\,C\,` are equal to the respective coordinates of :math:`\,v\,` in the basis :math:`\,B.` Given a basis, the vectors are in a one-to-one correspondence with the families of their coordinates. Consequently, the linear transformation :math:`\,F\,` defined by Eqs. :eq:`iso` or :eq:`iso_1` is a bijection, hence an isomorphism. So :math:`\,\text{Iso}(V,W)\neq\emptyset,\ ` and :math:`\,V\simeq W.` :math:`\ \ \bullet` Isomorphic vector spaces may consist of objects of different kinds. Having the same structure, they are however mathematically equivalent. .. admonition:: Corollary. All :math:`\,n`-dimensional vector spaces over a field :math:`\,K\ ` are isomorphic to the space :math:`\,K^n.`