Properties and Examples ----------------------- Some simple yet important and often used properties of linear transformations are collected in .. admonition:: Theorem 3. | Let :math:`\ V\ ` and :math:`\ W\ ` be vector spaces over the field :math:`\,K.\ ` | If the map :math:`\ F:\,V\rightarrow W\ ` is a linear transformation, then 1. :math:`\ F(\theta_V)\ =\ \theta_W\,;` 2. :math:`\ F(-\,v)\ =\ -\ F(v)\,,\qquad\forall\ v\in V\,;` 3. :math:`\ F(v_1-\,v_2)\ =\ F(v_1)\,-\,F(v_2)\,, \qquad\forall\ \ v_1,\,v_2\in V\,.` **Proof** :math:`\,` goes on the relations: .. math:: \begin{array}{rcl} \theta_V\,=\ 0\cdot\theta_V\,, & \qquad & 0\cdot w\ =\ \theta_W\,, \\ -\ v\ =\ (-1)\cdot v\,, & \qquad & (-1)\cdot w\ =\ -\ w\,, \end{array} \qquad\quad\forall\ v\in V,\ \ \forall\ w\in W. Namely, making use of the linearity of the transformation :math:`\ F\ ` we get: 1. :math:`\ F(\theta_V)\ =\ F(0\cdot\theta_V)\ =\ 0\cdot F(\theta_V)\ =\ \theta_W\,;` 2. :math:`\ F(-\,v)\ =\ F\,[\,(-1)\cdot v\,]\ =\ (-1)\cdot F(v)\ =\ -\ F(v)\,;` 3. :math:`\ F(v_1-v_2)\ =\ F\,[\,v_1+(-1)\cdot v_2\,]\ =\ F(v_1)+(-1)\cdot F(v_2)\ =\ F(v_1)-F(v_2)\ \bullet` :math:`\;` Being a bijective mapping, an isomorphism is invertible. It is interesting, yet not obvious, that such an inverse of an isomorphism is also a linear transformation, thus an isomorphism. .. admonition:: Theorem 4. Let :math:`\ V\ ` and :math:`\ W\ ` be vector spaces over the field :math:`\,K.` :math:`\\` If the linear transformation :math:`\ F:\,V\rightarrow W\ ` is an isomorphism, then the inverse map :math:`\ F^{-1}:\ W\rightarrow V\ ` is also a linear transformation, hence it is also an isomorphism. **Proof.** :math:`\,` The map :math:`\,F^{-1}\,` being obviously bijective, we only have to validate its additivity and homogeneity. Taking into account that the map :math:`\,F\ ` is linear and injective, we get .. math:: F[F^{-1}(w_1+w_2)]=w_1+w_2=F[F^{-1}(w_1)]+F[F^{-1}(w_2)]= F[F^{-1}(w_1)+F^{-1}(w_2)]\,, \text{hence}\qquad F^{-1}(w_1+w_2)\ =\ F^{-1}(w_1)+F^{-1}(w_2)\,; \text{}\qquad F[F^{-1}(a\,w)]=a\,w=a\,F[F^{-1}(w)]=F[a\,F^{-1}(w)]\,, \text{wherefrom}\qquad F^{-1}(a\,w)= a\,F^{-1}(w)\,,\qquad\forall\ \ w_1,w_2,w\in W,\ \ \forall\ a\in K. .. admonition:: Corollary. The set :math:`\ \text{Aut}(V)\ ` is a group under composition of mappings. Indeed, a composition of two automorphisms defined on a space :math:`\ V(K)\ ` is an automorphism on :math:`\ V.\ ` The composition itself, as a composition of mappings, is associative. The neutral element is the identity automorphism :math:`\,I(v)=v,\ \ \forall\ v\in V.\ ` Finally, in virtue of Theorem 4., the inverse of an automorphism is an automorphism. The group :math:`\ \text{Aut}(V)\ ` is in general non-commutative. :math:`\,` We still consider the two vector spaces, :math:`\ V\,` and :math:`\,W,\ ` over the field :math:`\,K.\ ` Assume that :math:`\ \text{dim}\,V=n\ ` and that the set :math:`\,B = \{v_1,v_2,\dots,v_n\}\ ` is a basis of the space :math:`\,V.\ ` Then every vector :math:`\,v\in V\ ` is represented in a unique way by a linear combination of vectors from :math:`\,B:` .. math:: v\ =\ a_1\,v_1\,+\;a_2\,v_2\,+\ \dots\ +\;a_n\,v_n\,. If :math:`\,F:\,V\rightarrow W\,` is a linear transformation, then the image of the vector :math:`\,v\ ` is given by .. math:: :nowrap: \begin{eqnarray*} F(v) & = & F(a_1\,v_1\,+\;a_2\,v_2\,+\ \dots\ +\;a_n\,v_n) \\ & = & a_1\,Fv_1\,+\;a_2\,Fv_2\,+\ \dots\ +\;a_n\,Fv_n\,. \end{eqnarray*} The last formula reveals an interesting property of the transformation :math:`\,F,\ ` resulting from the linearity. To determine the image :math:`\,F(v)\,` of any from among infinitely many vectors :math:`\,v\in V,\ ` it is sufficient to know the images of :math:`\,n\ ` vectors only (provided that these vectors form a basis). This remark is complemented by .. admonition:: Theorem 5. :math:`\\` Let :math:`\ V\ ` and :math:`\ W\ ` be vector spaces over the field :math:`\,K,\ ` while :math:`\ V\ ` is finite-dimensional one with a basis :math:`\,B = \{v_1,\,v_2,\,\dots,\,v_n\}.\ ` If :math:`\,F,\,G\in\text{Hom}(V,W),\ ` then .. math:: F\,=\,G\quad\Leftrightarrow\quad F\,v_i\,=\,G\,v_i\,,\qquad i=1,2,\ldots,n. **Proof.** :math:`\,` The implication :math:`\ \Rightarrow\ ` being obvious, we shall prove the inference :math:`\ \Leftarrow\ ` only. Let :math:`\ \displaystyle\,v\,=\,\sum_{i\,=\,1}^n\ a_i\,v_i\ ` be any vector in the space :math:`\,V.\ ` Then .. math:: F(v)\ =\ F\left(\,\sum_{i\,=\,1}^n\ a_i\,v_i\right)\ =\ \sum_{i\,=\,1}^n\ a_i\,Fv_i\ =\ \sum_{i\,=\,1}^n\ a_i\,Gv_i\ =\ G\left(\,\sum_{i\,=\,1}^n\ a_i\,v_i\right)\ =\ G(v)\,.\ \bullet .. admonition:: Corollary. A linear transformation of a finite-dimensional vector space :math:`\,V\ ` into any vector space :math:`\,W\,` (both over the same field :math:`\,K`) is completely determined by its values on vectors of any basis of :math:`\,V.` :math:`\,` Now, we shall present a few examples of linear transformations. **Example 0.** :math:`\,` Let :math:`\ V\ ` and :math:`\ W\ ` be vector spaces over the field :math:`\,K.\ ` The following mappings are linear transformations: 1. The zero map :math:`\ \,\Theta:\,V\rightarrow W:\qquad \Theta(v)\ =\ \theta_W\,,\quad\forall\ v\in V.` 2. The identity map :math:`\ \,I:\,V\rightarrow V:\qquad I(v)\ =\ v\,,\quad\forall\ v\in V.` 3. The map :math:`\ \,F_a:\,V\rightarrow V:\qquad F_a(v)\ =\ a\,v\,,\quad a\in K,\ \forall\ v\in V.` The transformations :math:`\,I\ ` and :math:`\,F_a\ ` (for :math:`\,a\ne 0`) :math:`\,` are automorphisms of the space :math:`\,V.` **Example 1.** :math:`\,` The following maps :math:`\ \,F:\,K^n\rightarrow K^m\ ` are linear transformations a. :math:`\quad F \left[\begin{array}{l} x_1 \\ \dots \\ x_m \\ x_{m+1} \\ \dots \\ x_n \end{array}\right] \ =\ \left[\begin{array}{l} x_1 \\ \dots \\ x_m \end{array}\right]\,,\qquad (n\geq m).` In particular, for :math:`\,m=1,\ ` the transformation :math:`\ F\ ` is a linear functional. b. :math:`\quad F(\boldsymbol{x})\ =\ \boldsymbol{A}\,\boldsymbol{x}\,,\qquad` where :math:`\ \boldsymbol{A}\in M_{m\times n}(K)\ ` is a given matrix, :math:`\ \,\boldsymbol{x}\in K^n.` **Example 2.** :math:`\,` The matrix transpose operation .. math:: T(\boldsymbol{A})\ =\ \boldsymbol{A}^{\,T}\,,\qquad\boldsymbol{A}\in M_{m\times n}(K) defines the linear transformation :math:`\ T:\,M_{m\times n}(K)\rightarrow M_{n\times m}(K).` **Example 3.** :math:`\\` Given the matrices :math:`\ \boldsymbol{B}\in M_{k\times m}(K)\ ` and :math:`\ \boldsymbol{C}\in M_{n\times l}(K),\ ` due to the properties of matrix multiplication, the mapping :math:`\ F:\,M_{m\times n}(K)\rightarrow M_{k\times l}(K)\ ` defined as .. math:: F(\boldsymbol{A})\ =\ \boldsymbol{B}\boldsymbol{A}\boldsymbol{C}\,, \qquad\forall\ \boldsymbol{A}\in M_{m\times n}(K)\,, is a linear transformation. **Example 4.** :math:`\,` Let :math:`\ V\ ` be the 3-dimensional space of geometrical vectors, :math:`\ \vec{a}\in V.` a. The map :math:`\ F:\,V\rightarrow V\ ` given by the cross product .. math:: F(\vec{r})\ =\ \vec{a}\times\vec{r}\,,\qquad\forall\ \vec{r}\in V\,, is a (non-surjective) endomorphism of the space :math:`\ V.` b. The map :math:`\ f:\,V\rightarrow R\ ` given by the dot product .. math:: F(\vec{r})\ =\ \vec{a}\cdot\vec{r}\,,\qquad\forall\ \vec{r}\in V\,, is a linear functional defined on the space :math:`\ V.` On the other hand, for a given number :math:`\,0\ne a\in R\ ` the transformation :math:`\ F:\,V\rightarrow V\ ` .. math:: F(\vec{r})\ =\ a\,\vec{r}\,,\qquad\forall\ \vec{r}\in V\,, is an automorphism of the space :math:`\,V\ ` (see Example 0., item 3.). **Example 5.** :math:`\,` The mapping :math:`\,f:\,K^n\rightarrow K\ ` given by .. math:: f\left[\begin{array}{l} x_1 \\ x_2 \\ \dots \\ x_n \end{array}\right]\ \,:\,=\ \, x_1 + x_2 + \ \dots\ + x_n is a linear functional. **Example 6.** :math:`\,` We define the :math:`\,` *trace* :math:`\,` of a square matrix :math:`\ \boldsymbol{A}=[a_{ij}]_{n\times n}\in M_n(K)\ ` as the sum of its diagonal elements: .. math:: \text{Tr}\,\boldsymbol{A}\ \,:\,=\ \,\sum_{i\,=\,1}^n\ a_{ii}\,. The properties of the matrix operations imply that the map :math:`\ \text{Tr}:\,M_n(K)\rightarrow K\ \,` is a linear functional defined upon the algebra of square matrices of size :math:`\,n\,` over the field :math:`\,K.` **Example 7.** :math:`\,` Let :math:`\,\mathcal{C}_{[\,0,1\,]}^{\,\infty}\ ` denote the vector space of real functions defined on the interval :math:`\,[\,0,\,1\,]\ ` and having derivatives of any order. The map which ascribes to each function from :math:`\,\mathcal{C}_{[\,0,1\,]}^{\,\infty}\ ` its first derivative, is an endomorphism, since the operation of differentiating is linear.