Matrix Transpose ---------------- The *transpose* of a matrix :math:`\,\boldsymbol{A}=[a_{ij}]_{m\times n}\,` is defined as the matrix :math:`\,\boldsymbol{A}^T=\,[a^T_{ij}]_{n\times m}\,,\ ` where .. math:: a_{ij}^T\ :\,=\ a_{ji},\qquad i=1,2,\ldots,n;\ \ j=1,2,\ldots,m. In the direct notation: :math:`\qquad \left[\begin{array}{cccc} a_{11} & a_{12} & \ldots & a_{1n} \\ a_{21} & a_{22} & \ldots & a_{2n} \\ \ldots & \ldots & \ldots & \ldots \\ a_{m1} & a_{m2} & \ldots & a_{mn} \end{array}\right]^T \ =\quad \left[\begin{array}{cccc} a_{11} & a_{21} & \ldots & a_{m1} \\ a_{12} & a_{22} & \ldots & a_{m2} \\ \ldots & \ldots & \ldots & \ldots \\ a_{1n} & a_{2n} & \ldots & a_{mn} \end{array}\right]\,.` .. math: \left[\begin{array}{cccc} a_{11} & a_{12} & \ldots & a_{1n} \\ a_{21} & a_{22} & \ldots & a_{2n} \\ \ldots & \ldots & \ldots & \ldots \\ a_{m1} & a_{m2} & \ldots & a_{mn} \end{array}\right]^{\ T} \ =\quad \left[\begin{array}{cccc} a_{11} & a_{21} & \ldots & a_{m1} \\ a_{12} & a_{22} & \ldots & a_{m2} \\ \ldots & \ldots & \ldots & \ldots \\ a_{1n} & a_{2n} & \ldots & a_{mn} \end{array}\right]\,. .. \ \ i=1,2,\ldots,n;\ j=1,2,\ldots,m.` Thus each :math:`\,i`-th row of matrix :math:`\,\boldsymbol{A}^T\,` is composed of elements of the :math:`\,i`-th column of matrix :math:`\,\boldsymbol{A},\,` and each `\ j`-th column of matrix :math:`\,\boldsymbol{A}^T\,` is composed of elements of the :math:`\,j`-th row of matrix :math:`\,\boldsymbol{A},\,` :math:`\ i=1,2,\ldots,n;\ j=1,2,\ldots,m.` Graphically, the operation of transposing a matrix may be described as the reflection of that matrix over its main diagonal. **Examples.** 1.) :math:`\ ` If :math:`\ \ \boldsymbol{A}\ =\ \left[\begin{array}{rr} 2 & - 1 \\ 3 & 0 \\ - 2 & 1 \end{array}\right] \in M_{3\times 2}(R),\ \ ` then :math:`\ \ \boldsymbol{A}^T\ =\ \left[\begin{array}{rrr} 2 & 3 & -2 \\ -1 & 0 & 1 \end{array} \right]\in M_{2\times 3}(R).` 2.) :math:`\ ` Transpose of a square matrix over the ring :math:`\,Z:` :math:`\ \ \left[\begin{array}{rrr} -2 & 1 & 0 \\ 5 & 2 & 3 \\ 7 & -3 & 8 \end{array}\right]^T =\ \;\left[\begin{array}{rrr} -2 & 5 & 7 \\ 1 & 2 & -3 \\ 0 & 3 & 8 \end{array}\right]\,.` 3.) :math:`\ ` Transpose of a one-column matrix over any ring: :math:`\ \ \left[\begin{array}{c} a_1 \\ a_2 \\ a_3 \\ a_4 \end{array}\right]^T =\ \;\left[\begin{array}{cccc} a_1 & a_2 & a_3 & a_4 \end{array}\right]\,.` .. :math:`\\` **Properties of Transpose.** 0.) :math:`\,` If :math:`\,\boldsymbol{A}\in M_{m \times n}(K),\,` then :math:`\,\left(\boldsymbol{A}^T\right)^T\ =\ \boldsymbol{A}` (a twofold application of transpose returns the original matrix). 1.) :math:`\,` Let :math:`\,\boldsymbol{A},\boldsymbol{B}\in M_{m \times n}(K),\ c\in K.\ \ ` Then :math:`\ \ (\boldsymbol{A}+\boldsymbol{B})^T =\, \boldsymbol{A}^T + \boldsymbol{B}^T,\ \ (c\boldsymbol{A})^T =\,c\boldsymbol{A}^T\,.` (transpose of a sum of two matrices equals the sum of their transposes, :math:`\\` a numerical factor may be moved up to the front of the transpose symbol: :math:`\\` transpose is a linear operation). .. math: (\boldsymbol{A}+\boldsymbol{B})^T = \boldsymbol{A}^T + \boldsymbol{B}^T, \quad (c\boldsymbol{A})^T = c\boldsymbol{A}^T 2.) :math:`\,` Let :math:`\,\boldsymbol{A}\in M_{m\times p}(K),\ \boldsymbol{B}\in M_{p\times n}(K).\ ` Then :math:`\ \ (\boldsymbol{A}\boldsymbol{B})^T =\, \boldsymbol{B}^T\boldsymbol{A}^T\,` (transpose of a product of two matrices equals the product of their transposes in reverse order). .. math: (\boldsymbol{A}\boldsymbol{B})^T = \boldsymbol{B}^T\boldsymbol{A}^T\,. **Proof** of the Property 2.: * | Comparison of the matrices' dimensions. | :math:`\boldsymbol{A}\boldsymbol{B}:\ m\times n\,;\quad (\boldsymbol{A}\boldsymbol{B})^T:\ n\times m\,.` | :math:`\boldsymbol{B}^T:\ n\times p\,;\quad \boldsymbol{A}^T:\ p\times m\,;\quad \boldsymbol{B}^T\boldsymbol{A}^T:\ n\times m\,.` * | Comparison of the corresponding matrix elements. | For :math:`\boldsymbol{A} = [a_{ij}]_{m\times p}\,,\ \boldsymbol{B}=[b_{ij}]_{p\times n}:` | :math:`(\boldsymbol{A}\boldsymbol{B})^T|_{ij}\ =\ (\boldsymbol{A}\boldsymbol{B})|_{ji}\ =\ \sum\limits_{s=1}^p \,a_{js}\,b_{si}\,,` | :math:`\boldsymbol{B}^T\boldsymbol{A}^T|_{ij}\ =\ \sum\limits_{s=1}^p \,b_{is}^T\,a_{sj}^T\ =\ \sum\limits_{s=1}^p \,a_{js}\,b_{si}\,,\quad i=1,2,\ldots,n;\ \ j=1,2,\ldots,m.\quad\bullet` Symmetric and Skew-Symmetric Matrices ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ A square matrix :math:`\,\boldsymbol{A}=[a_{ij}]_{n\times n}\in M_n(K)\,` is called a *symmetric matrix*, :math:`\\` if :math:`\,\boldsymbol{A}^T=\boldsymbol{A}\,,\ ` that is if :math:`\ \, a_{ij} = a_{ji}\,,\ \ i,j=1,2,\ldots,n.` Such matrix is invariant under the reflection over its main diagonal. On the other hand, when :math:`\,\boldsymbol{A}^T=-\boldsymbol{A}\,,\ ` the matrix :math:`\,\boldsymbol{A}\ ` is said to be *skew-symmetric*. Then :math:`\ a_{ij} = - \ a_{ji}\,,\ \ i,j=1,2,\ldots,n,\ ` wherefrom :math:`\ a_{ii} = 0\ \ \text{for}\ \ i=1,2,\ldots,n. \\` (in a skew-symmetric matrix all diagonal entries vanish). Symmetric and skew-symmetric real matrices of size three have the following general form: .. math:: \boldsymbol{A}_s\ =\ \left[\begin{array}{ccc} a & b & c \\ b & d & e \\ c & e & f \end{array}\right]\,, \qquad \boldsymbol{A}_a\ =\ \left[\begin{array}{rrr} 0 & a & \ \ b \\ -a & 0 & \ \ c \\ -b & -c & \ \ 0 \end{array}\,\right]\,. Every square matrix :math:`\,\boldsymbol{A}\in M_n(K)\,` may be expressed in a unique way as a sum of a symmetric and a skew-symmetric matrix components: .. math:: \boldsymbol{A}\ \ =\ \ \textstyle{1\over 2}\ (\boldsymbol{A}+\boldsymbol{A}^T)\ +\ \textstyle{1\over 2}\ (\boldsymbol{A}-\boldsymbol{A}^T), In Sage the matrix transpose is performed by the method ``transpose()`` (abbreviated to ``T``). There are also methods ``is_symmetric()`` and ``is_skew_symmetric()``, which check whether a given square matrix has the respective property. **Example.** :math:`\,` We shall rewrite the matrix .. math:: \boldsymbol{A}\ =\ \left[\begin{array}{rrr} 4 & 3 & -1 \\ 2 & -5 & 8 \\ 0 & -2 & 1 \end{array}\right]\,\in\,M_3(R) as the sum of symmetric and skew-symmetric components. The Sage code: .. code-block:: python sage: A = matrix(QQ,[[4, 3,-1], [2,-5, 8], [0,-2, 1]]) sage: As = (A + A.T)/2 sage: Aa = (A - A.T)/2 sage: show(table([[A, '=', As, '+', Aa]])) sage: (As.is_symmetric(), Aa.is_skew_symmetric()) yields the following result: .. math:: \left[\begin{array}{rrr} 4 & 3 & -1 \\ 2 & -5 & 8 \\ 0 & -2 & 1 \end{array}\right]\ \ =\ \ \left[\begin{array}{rrr} 4 & \textstyle{5\over 2} & -\textstyle{1\over 2} \\ \textstyle{5\over 2} & -5 & 3 \\ -\textstyle{1\over 2} & 3 & 1 \\ \end{array}\right]\ \ +\ \ \left[\begin{array}{rrr} 0 & \textstyle{1\over 2} & -\textstyle{1\over 2} \\ -\textstyle{1\over 2} & 0 & 5 \\ \textstyle{1\over 2} & -5 & 0 \\ \end{array}\right] (True, True)