Hermitian and Unitary Operators ------------------------------- .. Rozważamy skończenie wymiarową przestrzeń unitarną :math:`\,V(C).\ ` We start with two lemmas which will be useful in further considerations. :math:`\\` .. admonition:: Lemma 0. Let :math:`\ y\in V\,,\ ` where :math:`\ V\ ` is a unitary space. Then .. math:: \langle x,y\rangle = 0 \quad\text{for all}\quad x\in V \qquad\Leftrightarrow\qquad y = \theta\,. **Proof.** :math:`\ \Rightarrow\ :\ ` If :math:`\ \ \langle x,y\rangle = 0\,,\ \ x\in V\,,\ ` then putting :math:`\ x=y\ ` we obtain :math:`\ \langle y,y\rangle = 0\,,\ ` and thus :math:`\ y=\theta.` :math:`\ \Leftarrow\ :\ ` If :math:`\ y = \theta\,,\ ` then by properties of an inner product, :math:`\ \langle x,y\rangle = \langle x,\theta\rangle = 0\,.` .. admonition:: Corollary. If :math:`\ \,y_1,\,y_2\,\in\,V\,,\ ` where :math:`\ V\ ` is a unitary space, :math:`\,` then .. math:: \langle x,y_1\rangle = \langle x,y_2\rangle \quad\text{for all}\quad x\in V \qquad\Leftrightarrow\qquad y_1 = y_2\,. Indeed, if the condition :math:`\ \langle x,y_1\rangle = \langle x,y_2\rangle\ ` holds for all :math:`\ x\in V\,,` then .. math:: \langle\,x,\,y_1-y_2\,\rangle = 0\,,\quad x\in V \qquad\Leftrightarrow\qquad y_1-y_2=\theta \qquad\Leftrightarrow\qquad y_1=y_2\,. \; The *zero operator* :math:`\ \mathcal{O}\ ` which occurs in the next lemma is defined by: :math:`\ \ \mathcal{O}(v)=\theta\,,\ \ v\in V. \\` .. admonition:: Lemma 1. Let :math:`\ F\ ` be a linear operator defined on a unitary space :math:`\,V.\ ` Then .. math:: \langle\,x,Fy\,\rangle\,=\,0 \quad\text{for all}\quad x,y\in V \qquad\Leftrightarrow\qquad F=\mathcal{O}\,. **Proof.** :math:`\ \Rightarrow\ :\ ` If :math:`\ \ \langle x,Fy\rangle = 0 \ ` for all :math:`\ \ x,y\in V\,,\ ` then putting :math:`\ x=Fy\ ` we obtain: :math:`\ \langle Fy,Fy\rangle = 0\ \,` and thus :math:`\ \,Fy=\theta\ \,` for every :math:`\ y\in V\,,\ \,` which means that :math:`\ \,F=\mathcal{O}\,.` :math:`\ \Leftarrow\ :\ ` If :math:`\ \,F=\mathcal{O}\,,\ ` then for arbitrary :math:`\ x,y\in V:\ \ \langle x,Fy\rangle = \langle x,\mathcal{O}y\rangle = \langle x,\theta\rangle = 0\,.` .. admonition:: Corollary. If :math:`\ F,\,G\ ` are linear operators defined on a unitary space :math:`\,V,\ \,` then .. math:: \langle\,x,Fy\,\rangle\,=\,\langle\,x,G\,y\,\rangle \quad\text{for all}\quad x,y\in V \qquad\Leftrightarrow\qquad F=\,G\,. Indeed, if the condition :math:`\ \langle\,x,Fy\,\rangle\,=\,\langle\,x,Gy\,\rangle\,` holds for every :math:`\ x,y\in V\,,` then .. math:: \langle\,x,(F-G)\,y\,\rangle\,=\,0\,,\quad x,y\in V\qquad\Leftrightarrow\qquad F-G=\mathcal{O} \qquad\Leftrightarrow\qquad F=G\,. .. :math:`\ \langle\,x,(F-G)\,y\,\rangle\,=\,0\,,\quad x,y\in V\qquad\Leftrightarrow\qquad F-G=0 \qquad\Leftrightarrow\qquad F=G\,.` Hermitian Conjugation of a Linear Operator ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. admonition:: Definition. *Hermitian conjugation* :math:`\,` of a linear operator :math:`\ F\in\,\text{End}(V)` :math:`\\` is a linear operator :math:`\ F^+\in\,\text{End}(V)\ ` which satisfies the condition .. math:: :label: F_plus_0 \langle\,x,F^+y\,\rangle\,=\,\langle\,Fx,y\,\rangle \quad\text{for all}\quad x,y\in V\,. Observe that if the condition :eq:`F_plus_0` holds, :math:`\,` then .. math:: :label: F_plus_1 \langle\,F^+x,\,\,y\,\rangle\ =\ \langle\,y,\,F^+x\,\rangle^*\ =\ \langle\,Fy,\,x\,\rangle^*\ =\ \langle\,x,\,Fy\,\rangle\,. The reverse implication is also true: the condition :eq:`F_plus_1` implies :eq:`F_plus_0`. We may write then .. admonition:: Corollary. Hermitian conjugation :math:`\,F^+\,` of the operator :math:`\,F\in\text{End}(V)\ ` :math:`\\` satisfies two equivalent conditions: .. math:: :label: F_plus_2 \begin{array}{l} \langle\,x,F^+y\,\rangle\,=\,\langle\,Fx,y\,\rangle\,, \\ \\ \langle\,F^+x,\,\,y\,\rangle\ =\ \langle\,x,\,Fy\,\rangle \end{array} \qquad\text{for all}\quad x,y\in V\,. We will explain the following issues that arise from using such a definition: 1. do the formulae :eq:`F_plus_2` define the operator :math:`\,F^+\,,\ ` i.e., for a given operator :math:`F\,` is it possible to effectively determine the image :math:`\,F^+y\ ` of any vector :math:`\,y\in V\,?` 2. is the operator :math:`\,F^+\ ` linear? 3. is the operator :math:`\,F^+\ ` uniquely defined? For the sake of an answer, assume that :math:`\,\dim V=n\ ` and :math:`\ \mathcal{B}=(u_1,u_2,\ldots,u_n)\ ` is an orthonormal basis. 1. Substitution :math:`\ x=u_i\ ` in :eq:`F_plus_0` gives a formula for the :math:`\,i`-th coordinate of a vector :math:`\,F^+y\,` in terms of basis vectors: .. math:: (F^+y)_{\,i}\ =\ \langle u_i,F^+y\rangle\ =\ \langle Fu_i,y\rangle\,, \qquad i=1,2,\dots,n. Hence, the vector :math:`\,F^+y\ ` is determined by its coordinates in basis :math:`\ \mathcal{B}.` 2. Properties of an inner product imply that for arbitrary :math:`\,x\in V:` .. math:: \begin{array}{rcl} \langle\,x,\,F^+(\alpha_1\,y_1+\alpha_2\,y_2)\,\rangle & = & \langle\,Fx,\,\alpha_1\,y_1\,+\,\alpha_2\,y_2\,\rangle\,= \\ \\ & = & \alpha_1\,\langle Fx,y_1\rangle\,+\,\alpha_2\:\langle Fx,y_2\,\rangle\,= \\ \\ & = & \alpha_1\,\langle x,F^+y_1\rangle\,+\,\alpha_2\:\langle x,F^+y_2\,\rangle\,= \\ \\ & = & \langle\,x,\,\alpha_1\,F^+y_1+\alpha_2\,F^+y_2\,\rangle\,. \end{array} Corollary to Lemma 0. implies linearity of the operator :math:`\,F^+:` .. math:: F^+(\alpha_1\,y_1+\alpha_2\,y_2)\,=\ \alpha_1\,F^+y_1+\alpha_2\,F^+y_2\,, \qquad\alpha_1,\alpha_2\in C,\ \ y_1,y_2\in V\,. 3. In order to prove that the operator :math:`\,F^+\ ` is uniquely defined assume that there exists an operator :math:`\,G\ ` which satisfies the condition :eq:`F_plus_0`: .. math:: \langle\,x,F^+y\,\rangle\,=\,\langle\,Fx,y\,\rangle \quad\text{and}\quad \langle\,x,Gy\,\rangle\,=\,\langle\,Fx,y\,\rangle \quad\text{for all}\quad x,y\in V\,. This means that :math:`\ \langle\,x,F^+y\,\rangle\,=\,\langle\,x,Gy\,\rangle\ ` for all :math:`\ x,y\in V\,.\ ` Lemma 1. implies that in this case :math:`\,G=F^+.\ ` Hence, the conditions :eq:`F_plus_2` define the operator :math:`\,F^+\ ` uniquely. .. Istnieje więc dokładnie jeden operator liniowy :math:`\,F^+,\ ` spełniający :eq:`F_plus_2`. :math:`\\` The issue of existence and uniqueness of the operator :math:`\,F^+\ ` may be independently explained by .. admonition:: Theorem 8. A linear operator :math:`\,\widetilde{F}\ ` is a Hermitian conjugation of the linear operator :math:`\,F\ ` :math:`\\` if and only if its matrix in an orthonormal basis :math:`\,\mathcal{B}\ ` :math:`\\` is a Hermitian congujate of the matrix of the operator :math:`\,F\ ` in this basis: .. math:: \widetilde{F}=F^+\quad\Leftrightarrow\quad M_{\mathcal{B}}(\widetilde{F})\,=\,[\,M_{\mathcal{B}}(F)\,]^+\,, \qquad F,\,\widetilde{F}\,\in\,\text{End}(V)\,. **Proof.** :math:`\,` Let :math:`\ \ \mathcal{B}=(u_1,u_2,\ldots,u_n),\ \ M_{\mathcal{B}}(F)=\boldsymbol{F}=[\,\varphi_{ij}\,]_{n\times n}\,,\ \ M_{\mathcal{B}}(\widetilde{F})=\widetilde{\boldsymbol{F}}= [\,\widetilde{\varphi}_{ij}\,]_{n\times n}\,.` .. .. math:: M_{\mathcal{B}}(F)=\boldsymbol{F}=[\,\varphi_{ij}\,]_{n\times n}\,,\quad M_{\mathcal{B}}(F^+)=\widetilde{\boldsymbol{F}}=[\,\widetilde{\varphi}_{ij}\,]_{n\times n}\,. :math:`\ \Rightarrow\ :\ ` Assume that :math:`\ \widetilde{F}=F^+,\ ` that is, the operator :math:`\ \widetilde{F}\ ` satisfies the condition :eq:`F_plus_0`: .. math:: :label: x_Ft_y \langle\,x,\widetilde{F}y\,\rangle\,=\,\langle\,Fx,y\,\rangle \quad\text{for all}\quad x,y\in V\,. In particular, for :math:`\,x=u_i,\,y=u_j\ ` we obtain: .. math:: \widetilde{\varphi}_{ij}\,=\, \langle\,u_i\,,\widetilde{F}u_j\,\rangle\,=\,\langle\,Fu_i,u_j\,\rangle\,=\, \langle\,u_j,Fu_i\,\rangle^*\,=\, \varphi_{ji}^*\,=\,\varphi_{ij}^+\,,\qquad i,j=1,2,\ldots,n. Equality of the corresponding matrix elements implies equality of matrices: .. math:: \widetilde{\boldsymbol{F}}=\boldsymbol{F}^+\,, \qquad\text{and thus}\qquad M_{\mathcal{B}}(\widetilde{F})\ =\ \left[\,M_{\mathcal{B}}(F)\,\right]^+. :math:`\ \Leftarrow\ :\ ` Assume that :math:`\ M_{\mathcal{B}}(\widetilde{F})\ =\ \left[\,M_{\mathcal{B}}(F)\,\right]^+,\ \,` that is, :math:`\ \widetilde{\boldsymbol{F}}=\boldsymbol{F}^+.` We have to show that the operator :math:`\,\widetilde{F}\ ` satisfies the condition :eq:`x_Ft_y`, :math:`\,` which will mean that :math:`\ \widetilde{F}=F^+.` Let :math:`\ \ x\,=\,\displaystyle\sum_{i\,=\,1}^n\ \alpha_i\,u_i\,,\ \ y=\displaystyle\sum_{j\,=\,1}^n\ \beta_j\,u_j\,.\ ` Then .. math:: \begin{array}{rcl} \langle\,x,\widetilde{F}y\,\rangle & =\ & \left\langle\ \;\displaystyle\sum_{i\,=\,1}^n\ \alpha_i\,u_i\,,\ \widetilde{F} \left(\:\sum_{j\,=\,1}^n\ \beta_j\,u_j\right)\;\right\rangle\ \ = \\ \\ & =\ \ & \displaystyle\sum_{i,\,j=1}^n\,\alpha_i^*\,\beta_j\ \langle\,u_i,\widetilde{F}u_j\,\rangle \ \,=\ \, \sum_{i,\,j=1}^n\,\alpha_i^*\,\beta_j\ \widetilde{\varphi}_{ij}\ \ = \\ & =\ \ & \displaystyle\sum_{i,\,j=1}^n\,\alpha_i^*\,\beta_j\ \varphi_{ij}^+\ \,=\ \, \sum_{i,\,j=1}^n\,\alpha_i^*\,\beta_j\ \varphi_{ji}^*\ \,= \\ & =\ \ & \displaystyle\sum_{i,\,j=1}^n\,\alpha_i^*\,\beta_j\ \langle\,u_j,Fu_i\,\rangle^*\ \,=\ \, \sum_{i,\,j=1}^n\,\alpha_i^*\,\beta_j\ \langle\,Fu_i,u_j\,\rangle\ \,= \\ \\ & =\ \ & \left\langle\ F\,\left(\,\displaystyle\sum_{i\,=\,1}^n\ \alpha_i\,u_i\right)\,,\ \ \displaystyle\sum_{j\,=\,1}^n\ \beta_j\,u_j\,\right\rangle\ \ = \ \ \langle\,Fx,y\,\rangle\,. \end{array} If we use the notion of Hermitian conjugation also for the operation of Hermitian conjugation, we may write .. Tezę twierdzenia 8. można powtórzyć bardziej konkretnie jako .. admonition:: Corollary. Hermitian conjugation of a linear operator :math:`\,F\ ` is equivalent to Hermitian conjugation of the matrix of this operator in every orthonormal basis :math:`\,\mathcal{B}:` .. math:: :label: M_B_F_plus M_{\mathcal{B}}(F^+)\ =\ \left[\,M_{\mathcal{B}}(F)\,\right]^+\,. .. .. math:: G=F^+\quad\Leftrightarrow\quad M_{\mathcal{B}}(G)\,=\,[\,M_{\mathcal{B}}(F)\,]^+\,, \qquad F,\,G\,\in\,\text{End}(V)\,. :math:`\;` **Properties of Hermitian conjugation.** :math:`\\` 1. Hermitian conjugation of sum of two operators is equal to sum of their Hermitian conjugations: .. math:: (F+G)^+\,=\;F^++\:G^+\,,\qquad F,\,G\,\in\,\text{End}(V)\,. 2. Multiplication of an operator by a complex number :math:`\ \alpha\ ` multiplies its Hermitian conjugation by :math:`\ \alpha^*:` .. math:: (\alpha\,F)^+\ =\ \;\alpha^*\,F^+\,,\qquad\alpha\in C,\ \ F\in\text{End}(V)\,. 3. Hermitian conjugate of product (i.e., composition) of operators is equal to product of Hermitian conjugations with reverse order of the factors: .. math:: (F\,G)^+\ =\ \;G^+\,F^+\,,\qquad F,\,G\,\in\,\text{End}(V)\,. 4. Double Hermitian conjugation returns the initial operator : .. math:: (F^+)^+\,=\ F\,,\qquad F\in\text{End}(V)\,. **Proof of the properties** bases on Lemma 1. preceding this section. :math:`\\` 1. Definition of a sum of two linear operators implies the equalities: .. math:: \begin{array}{lcl} \langle\,x,\,(F+G)^+\,y\,\rangle & \ = & \ \langle\,(F+G)\,x,\,y\,\rangle\ \ = \\ \\ & \ = & \ \langle\,Fx+Gx,\,y\,\rangle\ \ = \\ \\ & \ = & \ \langle\,Fx,y\,\rangle + \langle\,Gx,\,y\,\rangle\ \ = \\ \\ & \ = & \ \langle\,x,F^+y\,\rangle + \langle\,x,G^+y\,\rangle\ \ = \\ \\ & \ = & \ \langle\,x,F^+y+G^+y\,\rangle\quad=\quad\langle\,x,(F^+\!+G^+)\,y\,\rangle\,; \\ & & \end{array} \langle\,x,\,(F+G)^+\,y\,\rangle = \langle\,x,(F^+\!+G^+)\,y\,\rangle, \ \ x,y\in V \quad\Rightarrow\quad (F+G)^+\ =\ F^++\,G^+ . 2. A proof of this property proceeds in a similar way as in the point 1. 3. By definition of composition of two linear operators: .. math:: \begin{array}{rclcl} \langle\,x,\,(F\,G)^+\,y\,\rangle & = & \langle\,(F\,G)\,x,\,y\,\rangle\ \ =\ \ \langle\,F(Gx),\,y\,\rangle & = & \\ \\ & = & \langle\,Gx,F^+y\,\rangle\ \ =\ \ \langle\,x,G^+(F^+y)\,\rangle & = & \langle\,x,(G^+F^+)\,y\,\rangle\,; \\ & & & & \end{array} \langle\,x,\,(F\,G)^+\,y\,\rangle = \langle\,x,(G^+F^+)\,y\,\rangle,\ \ x,y\in V \qquad\Rightarrow\qquad (F\,G)^+\ =\ G^+F^+\,. 4. Formulae :eq:`F_plus_2` imply: .. math:: \begin{array}{c} \langle\,x,\,(F^+)^+\,y\,\rangle\ =\ \langle\,F^+x,\,\,y\,\rangle\ =\ \langle\,x,\,Fy\,\rangle\,; \\ \\ \langle\,x,\,(F^+)^+\,y\,\rangle\ =\ \langle\,x,\,Fy\,\rangle\,,\quad x,y\in V \qquad\Rightarrow\qquad (F^+)^+\ =\ F\,. \end{array} .. admonition:: Corollary. Hermitian conjugation is an antilinear operation: .. math:: (\alpha\,F+\beta\,G)^+\ =\ \, \alpha^*\,F^+\,+\,\beta^*\,G^+\,,\qquad \alpha,\beta\in C\,,\quad F,\,G\in\,\text{End}(V)\,. In view of Theorem 8. and its corollary, an anlogy between properties of Hermitian conjugation of matrices and linear operators is not coincidental. :math:`\\` Hermitian Operators ~~~~~~~~~~~~~~~~~~~ .. admonition:: Definition. A linear operator :math:`\,F\in\text{End}(V)\ ` is a :math:`\,` *Hermitian operator* :math:`\\` if it is equal to its Hermitian conjugation: .. math:: F=F^+\qquad\text{that is}\qquad\langle\,x,Fy\,\rangle\ =\ \langle\,Fx,y\,\rangle\quad \text{for all}\quad x,y\in V\,. In particular, for a Hermitian operator :math:`\,F\,:` .. math:: :label: x_F_x \langle\,x,Fx\,\rangle\ =\ \langle\,Fx,x\,\rangle\quad \text{for all}\quad x\in V\,. A corollary to Theorem 8. implies immediately .. admonition:: Theorem 9. A linear operator :math:`\,F\in\text{End}(V)\ ` is Hermitian if and only if in every orthonormal basis :math:`\,\mathcal{B}\ ` of the space :math:`\ V\ ` its matrix is Hermitian: .. math:: F=F^+\quad\Leftrightarrow\quad M_{\mathcal{B}}(F)\,=\,[\,M_{\mathcal{B}}(F)\,]^+\,, \qquad F\in\text{End}(V)\,. In what follows we will make use of a criterion for a complex number :math:`\,z\,` to be real: .. math:: z\in R\quad\Leftrightarrow\quad z^*=\,z\,,\qquad z\in C\,. **Properties of Hermitian operators.** :math:`\\` Let :math:`\,F\in\text{End}(V)\ ` be a Hermitian operator. Then: :math:`\\` 1. For every :math:`\,x\in V\,` an expression :math:`\,\langle x,Fx\rangle\ ` is a real number. Indeed, according to the definition of an inner product and the formula :eq:`x_F_x`, we have .. math:: \langle\,x,Fx\,\rangle^*\ =\ \langle\,Fx,x\,\rangle\ =\ \langle\,x,Fx\,\rangle \qquad\Rightarrow\qquad\langle\,x,Fx\,\rangle\in R. One can prove that the condition :math:`\,\forall_{x\in V}\langle x,Fx\rangle\in R\,` is not only necessary, but also sufficient for an operator :math:`\,F\ ` to be Hermitian. Hence, .. admonition:: Corollary. If :math:`\,F\in\text{End}(V)\,,\ ` then :math:`\qquad F\ =\ F^+\quad\Leftrightarrow\quad \langle\,x,Fx\,\rangle\in R\,,\quad x\in V\,.` :math:`\;` 2. Eigenvalues of the operator :math:`\,F\ ` are real. **Proof.** :math:`\,` Assume that :math:`\quad Fv\,=\,\lambda\,v\,,\quad v\in V\!\smallsetminus\!\{\theta\},\quad\lambda\in C\,.\ \ ` By the formula :eq:`x_F_x`, .. math:: :nowrap: \begin{eqnarray*} \langle\,v,Fv\,\rangle & \! = \! & \langle\,Fv,v\,\rangle\,, \\ \langle\,v,\,\lambda\,v\,\rangle & \! = \! & \langle\,\lambda\,v,v\,\rangle\,, \\ \lambda\ \langle v,v\rangle & \! = \! & \lambda^*\;\langle v,v\rangle\,, \quad\text{where}\quad\langle v,v\rangle>0\,; \\ \lambda & \! = \! & \lambda^* \quad\ \ \Leftrightarrow\quad\ \ \,\lambda\in R\,. \end{eqnarray*} 3. Eigenvectors of the operator :math:`\,F\ ` associated with different eigenvalues are orthogonal. **Proof.** :math:`\,` Assume that :math:`\quad Fv_1\,=\,\lambda_1\,v_1\,,\ \ Fv_2\,=\,\lambda_2\,v_2\,,\quad v_1,v_2\in V\!\smallsetminus\!\{\theta\}\,,\quad\lambda_1\neq\lambda_2\,.` Starting from a definition of the Hermitian operator, we obtain .. math:: :nowrap: \begin{eqnarray*} \langle\,v_1,Fv_2\,\rangle & = & \langle\,Fv_1,v_2\,\rangle \\ \langle\,v_1,\lambda_2\,v_2\,\rangle & = & \langle\,\lambda_1\,v_1,v_2\,\rangle \\ \lambda_2\ \langle v_1,v_2\rangle & = & \lambda_1^*\ \langle v_1,v_2\rangle \\ \lambda_2\ \langle v_1,v_2\rangle & = & \lambda_1\ \langle v_1,v_2\rangle \\ (\lambda_2-\lambda_1)\ \langle v_1,v_2\rangle & = & 0\,. \end{eqnarray*} Since by an assumption :math:`\ \lambda_1\neq\lambda_2\,,\ ` so we must have :math:`\ \langle v_1,v_2\rangle=0\,,\ ` as required. :math:`\\` Hence, eigenvectors of the Hermitian operator :math:`\,F\ ` associated with different eigenvalues comprise an orthogonal system. Recall that one may normalise any ortoghonal set of vectors and thus obtain an orthonormal system. This implies .. admonition:: Corollary. If a Hermitian operator :math:`\,F\ ` defined on an :math:`\,n`-dimensional unitary space :math:`\,V\ ` has :math:`\,n\,` distinct eigenvalues, then one may choose an orthonormal basis for the space :math:`\,V\ ` consisting of eigenvectors of this operator. .. (faktycznie, warunek :math:`\,n\,` różnych wartości własnych nie jest konieczny do istnienia takiej bazy) Unitary Operators ~~~~~~~~~~~~~~~~~ .. admonition:: Definition. A linear operator :math:`\,U\ ` defined on a unitary space :math:`\,V\ ` is *unitary* :math:`\,` if .. math:: U^+U\ =\ I\,, where :math:`\,I\ ` is an identity operator defined by the condition: :math:`\,I(v)=v\,,\ v\in V.` Unitary operators are closely related with unitary matrices. Namely, .. admonition:: Theorem 10. A linear operator :math:`\ U\ ` defined on an :math:`\,n`-dimensional unitary space :math:`\,V\ ` is unitary if and only if in every orthonormal basis :math:`\ \mathcal{B}\ ` its matrix is unitary: .. math:: U^+U\ =\ I\qquad\Leftrightarrow\qquad \boldsymbol{B}^+\boldsymbol{B}\ =\ \boldsymbol{I}_n\,, where :math:`\ \ \boldsymbol{B}\,=\,M_{\mathcal{B}}(U)\,,\ \ \boldsymbol{I}_n\ ` - :math:`\,` an identity matrix of size :math:`\,n.` **Proof.** The mapping :math:`\,M_{\mathcal{B}}:\,\text{End}(V)\rightarrow M_n(C)\,` which assigns matrices to linear operators is - as an algebra isomorphism - bijective and multiplicative. :math:`\\` Hence, and also by the equation :eq:`M_B_F_plus`, the following equalities are equivalent: .. math:: :nowrap: \begin{eqnarray*} U^+U & = & I\,, \\ M_{\mathcal{B}}(U^+U) & = & M_{\mathcal{B}}(I)\,, \\ M_{\mathcal{B}}(U^+)\,M_{\mathcal{B}}(U) & = & M_{\mathcal{B}}(I)\,, \\ \left[\,M_{\mathcal{B}}(U)\,\right]^+M_{\mathcal{B}}(U) & = & M_{\mathcal{B}}(I)\,, \\ \boldsymbol{B}^+\boldsymbol{B} & = & \boldsymbol{I}_n\,. \end{eqnarray*} **Properties of unitary operators.** Consider a unitary operator :math:`\ U\ ` defined on a unitary space :math:`\,V:` .. math:: :label: U0 U^+U\ =\ I\,. 0. The condition :eq:`U0` implies existence of the inverse operator :math:`\ U^{-1}=U^+\ ` and an identity .. math:: UU^+\ =\ \left(U^+\right)^+\,U^+\ =\ I\,, which means that if :math:`\ U\ ` is a unitary operator, then both the conjugate operator :math:`\ U^+\ ` and :math:`\,` the inverse operator :math:`\ U^{-1}\,` are unitary. 1. Product (i.e., composition) of two unitary operators is a unitary operator. Indeed, if :math:`\,U_1^+U_1=U_2^+U_2=I\,,\ \ ` then by properties of Hermitian conjugation :math:`\\` of operators and by associativity of composition of operators, we obtain .. math:: (U_1\,U_2)^+(U_1\,U_2)\ =\ (U_2^+\,U_1^+)(U_1\,U_2)\ =\ U_2^+\,(U_1^+U_1)\,U_2\ =\ U_2^+\,I\ U_2\ =\ U_2^+\,U_2\ =\ I\,. Hence, composition is an operation on the set of unitary operators. :math:`\\` Further, since the identity operator :math:`\,I\,` is unitary and so is an inverse of a unitary operator, we may write .. admonition:: Corollary. Unitary operators defined on the space :math:`\,V\ ` together with their composition comprise a (nonabelian) group. :math:`\,` 2. The operator :math:`\ U\ ` preserves an inner product: .. math:: :label: U1 \langle\,Ux,\,Uy\,\rangle\ =\ \langle x,y\rangle\,,\qquad x,y\in V\,, since :math:`\quad\langle\,Ux,\,Uy\,\rangle\ =\ \langle\,U^+U\,x,\,y\,\rangle\ =\ \langle\,Ix,y\,\rangle\ =\ \langle x,y\rangle\,.` In particular, :math:`\ U\ ` preserves a vector norm: .. math:: :label: U2 \|\,Ux\,\|\ =\ \|x\|\,,\qquad x\in V\,, because :math:`\quad\|\,Ux\,\|^{\,2}\ =\ \langle\,Ux,Ux\,\rangle\ =\ \langle\,U^+U\,x,\,x\,\rangle\ =\ \langle x,x\rangle\,.` Preservation of a norm (which is a generalised length) of a vector by the operator :math:`\ U\ ` allows to interpret its action as a generalised rotation of a vector in the space :math:`\ V.` One may prove that the conditions :math:`\,` :eq:`U0`, :math:`\,` :eq:`U1` :math:`\,` and :math:`\,` :eq:`U2` :math:`\,` are equivalent, :math:`\\` and thus each of them may serve as a definition of a unitary operator. :math:`\\` 3. Eigenvalues of the operator :math:`\ U\ ` are complex numbers with modulus :math:`\,1.` **Proof.** :math:`\,` Assume that :math:`\ v\ ` is an eigenvector of the operator :math:`\ U\ ` associated with an eigenvalue :math:`\ \lambda\in C.\ ` Then .. Niech :math:`\quad Uv=\lambda\,v\,,\quad\theta\neq v\in V\,,\quad\lambda\in C.\ ` Wtedy .. math:: :nowrap: \begin{eqnarray*} Uv & = & \lambda\,v\,,\quad v\neq\theta\,, \\ \|\,Uv\,\| & = & \|\,\lambda\,v\,\|\,, \\ \|v\| & = & |\lambda|\ \|v\|\,, \\ (|\lambda|-1)\ \|v\| & = & 0\,,\quad\|v\|\neq 0\,, \\ |\lambda|-1 & = & 0\,, \\ |\lambda| & = & 1\,. \end{eqnarray*} 4. Eigenvectors of the operator :math:`\ U\ ` associated with different eigenvalues are orthogonal. **Proof.** :math:`\,` Assume that :math:`\quad Uv_1\,=\,\lambda_1\,v_1\,,\ \ Uv_2\,=\,\lambda_2\,v_2\,,\quad v_1,v_2\in V\!\smallsetminus\!\{\theta\}\,,\quad\lambda_1\neq\lambda_2\,.` We already know that :math:`\quad|\lambda_1|=|\lambda_2|=1\,,\quad` and thus :math:`\quad|\lambda_1|^2=\lambda_1^*\,\lambda_1=1\,,\quad\lambda_1^*=1/\lambda_1\,.\ ` Hence, .. .. math:: \begin{array}{rcccl} \langle v_1,v_2\rangle & = & \langle\,Uv_1,\,Uv_2\,\rangle & = & \\ & = & \langle\,\lambda_1\,v_1,\,\lambda_2\,v_2\,\rangle & = & \\ & = & \lambda_1^*\,\lambda_2\,\langle v_1,v_2\rangle & = & \displaystyle\frac{\lambda_2}{\lambda_1}\ \ \langle v_1,v_2\rangle\,. \end{array} :math:`\langle v_1,v_2\rangle\ =\ \langle\,Uv_1,\,Uv_2\,\rangle\ =\ \langle\,\lambda_1\,v_1,\,\lambda_2\,v_2\,\rangle\ =\ \lambda_1^*\;\lambda_2\ \langle v_1,v_2\rangle\ =\ \displaystyle\frac{\lambda_2}{\lambda_1}\ \ \langle v_1,v_2\rangle\,,` :math:`\left(\,1\ -\ \displaystyle\frac{\lambda_2}{\lambda_1}\;\right)\ \langle v_1,v_2\rangle\ =\ 0\,,\quad\text{and}\ \ \text{so}\quad\lambda_1\neq\lambda_2\,, \quad\text{implies}\quad\langle v_1,v_2\rangle\ =\ 0\,.`