Application to Systems of Linear Differential Equations ------------------------------------------------------- Consider a system of linear differential equations of degree 1 with constant coefficients: .. .. math:: :label: set_diff \dot{x}_1\ =\ a_{11}\,x_1\,+\,a_{12}\,x_2\,+\,\ldots\,+\,a_{1n}\,x_n \dot{x}_2\ =\ a_{21}\,x_1\,+\,a_{22}\,x_2\,+\,\ldots\,+\,a_{2n}\,x_n \quad\ \ \ldots\qquad\ldots\qquad\ \ \ldots\qquad\ldots\qquad\ldots\qquad \dot{x}_n\ =\ a_{n1}\,x_1\,+\,a_{n2}\,x_2\,+\,\ldots\,+\,a_{nn}\,x_n .. math:: :label: set_diff \begin{array}{l} \dot{x}_1\ =\ a_{11}\,x_1\,+\,a_{12}\,x_2\,+\,\ldots\,+\,a_{1n}\,x_n \\ \dot{x}_2\ =\ a_{21}\,x_1\,+\,a_{22}\,x_2\,+\,\ldots\,+\,a_{2n}\,x_n \\ \ \ldots\qquad\ldots\qquad\ \ \ldots\qquad\ldots\qquad\ldots\qquad \\ \dot{x}_n\ =\ a_{n1}\,x_1\,+\,a_{n2}\,x_2\,+\,\ldots\,+\,a_{nn}\,x_n \end{array} where :math:`\ \ x_i=x_i(t)\,,\ \ \dot{x}_i\,=\,\frac{d}{dt}\ x_i(t)\,,\ \ a_{ij}\in R\,,\ \ i,j=1,2,\ldots,n.\ ` By introducing the notation .. math:: \boldsymbol{A}\ =\ \left[\begin{array}{cccc} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{array}\right]\,,\qquad \boldsymbol{x}\ =\ \left[\begin{array}{c} x_1 \\ x_2 \\ \ldots \\ x_n \end{array}\right]\,,\qquad \boldsymbol{\dot{x}}\ =\ \left[\begin{array}{c} \dot{x}_1 \\ \dot{x}_2 \\ \ldots \\ \dot{x}_n \end{array}\right]\,, we can write the system :eq:`set_diff` in a compact matrix form: .. math:: :label: mat_eqn \boldsymbol{\dot{x}}\ =\ \boldsymbol{A}\,\boldsymbol{x}\,. We look for the solutions of the form .. math:: :label: exp_soln \boldsymbol{x}(t)\,=\,\boldsymbol{v}\,e^{\,\lambda\,t}\,,\qquad \lambda\in C\,,\quad\boldsymbol{v}=[\,\beta_i\,]_n\in C^n\,. Then :math:`\ \,\boldsymbol{\dot{x}}(t)=\lambda\,\boldsymbol{v}\,e^{\,\lambda\,t}\ ` and substitution into :eq:`mat_eqn` gives .. math:: \lambda\,\boldsymbol{v}\,e^{\,\lambda\,t}\ =\ \boldsymbol{A}\,\boldsymbol{v}\,e^{\,\lambda\,t}\,, which, after dividing by :math:`\ e^{\,\lambda\,t}\neq 0\,,\ ` reads .. math:: :label: eigen_eqn \boldsymbol{A}\,\boldsymbol{v}\ =\ \lambda\,\boldsymbol{v}\,. The equation :eq:`eigen_eqn` is an eigenproblem of the matrix :math:`\,\boldsymbol{A}\ ` viewed as a linear operator in the space :math:`\,C^n\ ` (the action of this operator on a vector :math:`\,\boldsymbol{x}\in C^n\,` is to multiply this vector on the left by :math:`\boldsymbol{A}`). .. (działając na wektor :math:`\,\boldsymbol{x}\in C^n\,` operator mnoży go z lewej strony przez :math:`\boldsymbol{A}`). Hence, the function :eq:`exp_soln` is a solution of the equation :eq:`mat_eqn` if and only if :math:`\lambda\ ` is an eigenvalue of the matrix :math:`\,\boldsymbol{A}\,,\ ` and :math:`\ \,\boldsymbol{v}\ ` - :math:`\,` an eigenvector associated to this eigenvalue. We compute the eigenvalues :math:`\ \lambda\ ` from the characteristic equation .. .. math:: :label: char_eqn \det\,(\boldsymbol{A}-\lambda\,\boldsymbol{I}_n)\ =\ 0\,, .. math:: :label: char_eqn \det\,(\boldsymbol{A}-\lambda\,\boldsymbol{I}_n)\ \ =\ \ \left| \begin{array}{cccc} \alpha_{11}-\lambda & \alpha_{12} & \dots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22}-\lambda & \dots & \alpha_{2n} \\ \dots & \dots & \dots & \dots \\ \alpha_{n1} & \alpha_{n2} & \dots & \alpha_{nn}-\lambda \end{array} \right|\ \ =\ \ 0\,, and the associated eigenvectors :math:`\,` - :math:`\,` by solving a linear problem :eq:`eigen_eqn` for a given eigenvalue :math:`\,\lambda:` .. .. math:: :label: hom_set (a_{11}-\lambda)\ \beta_1\,+\,a_{12}\ \beta_2\,+\,\ldots\,+\,a_{1n}\ \beta_n\ =\ 0 a_{21}\ \beta_1\,+\,(a_{22}-\lambda)\ \beta_2\,+\,\ldots\,+\,a_{2n}\ \beta_n\ =\ 0 \quad\ldots\qquad\ldots\qquad\ldots\qquad\ldots\qquad\ldots a_{n1}\ \beta_1\,+\,a_{n2}\ \beta_2\,+\,\ldots\,+\,(a_{nn}-\lambda)\ \beta_n\ =\ 0 .. math:: :label: hom_set \begin{array}{l} (a_{11}-\lambda)\ \beta_1\,+\,a_{12}\ \beta_2\,+\,\ldots\,+\,a_{1n}\ \beta_n\ =\ 0 \\ a_{21}\ \beta_1\,+\,(a_{22}-\lambda)\ \beta_2\,+\,\ldots\,+\,a_{2n}\ \beta_n\ =\ 0 \\ \ \ \ldots\qquad\ldots\qquad\ldots\qquad\ldots\qquad\ldots \\ a_{n1}\ \beta_1\,+\,a_{n2}\ \beta_2\,+\,\ldots\,+\,(a_{nn}-\lambda)\ \beta_n\ =\ 0 \end{array} Because the system :eq:`set_diff`, and so also the associated matrix equation :eq:`mat_eqn` are homogeneous, each linear combination of solutions is also a solution of the system. We discuss now different situations that may occur depending on possible solutions of the characteristic equation. :math:`\;` **Case 1.** :math:`\,` The equation :eq:`char_eqn` has :math:`\,n\ ` different real roots :math:`\ \lambda_1,\,\lambda_2,\,\ldots,\,\lambda_n\,.\ ` Then the real eigenvectors :math:`\ \boldsymbol{v}_1,\,\boldsymbol{v}_2,\,\ldots,\,\boldsymbol{v}_n\,` associated to these eigenvalues and also the corresponding particular solution .. math:: :label: spec_sols \boldsymbol{x}^1(t)=e^{\,\lambda_1\,t}\,\boldsymbol{v}_1\,,\quad \boldsymbol{x}^2(t)=e^{\,\lambda_2\,t}\,\boldsymbol{v}_2\,,\quad\ldots\,,\quad \boldsymbol{x}^n(t)=e^{\,\lambda_n\,t}\,\boldsymbol{v}_n .. :math:`\ \boldsymbol{x}^1(t)=e^{\,\lambda_1\,t}\,\boldsymbol{v}_1\,,\ \, \boldsymbol{x}^2(t)=e^{\,\lambda_2\,t}\,\boldsymbol{v}_2\,,\,\ldots\,,\, \boldsymbol{x}^n(t)=e^{\,\lambda_n\,t}\,\boldsymbol{v}_n\ \,` are linearly independent. The general solution is a linear combination of the particular solutions: .. math:: :label: gen_sol \boldsymbol{x}(t)\ =\ c_1\ \boldsymbol{x}^1(t)\,+\,c_2\ \boldsymbol{x}^2(t)\,+\,\ldots\,+\, c_n\ \boldsymbol{x}^n(t)\,,\qquad c_1,\,c_2,\,\ldots,\,c_n\in R\,. **Example 1.** :math:`\,` We determine the general solution of the system of equations .. math:: :nowrap: \begin{alignat*}{3} \dot{x}_1 & {\ } = {\ } & 2\,x_1 & {\ } - {\ } & x_2 \\ \dot{x}_2 & {\ } = {\ } & 4\,x_1 & {\ } - {\ } & 3\,x_2 \end{alignat*} The characteristic equation :eq:`char_eqn` for the matrix :math:`\,\boldsymbol{A}\ =\ \left[\begin{array}{rr} 2 & -1 \\ 4 & -3 \end{array}\right]:` .. math:: \left|\begin{array}{cc} 2-\lambda & -1 \\ 4 & -3-\lambda \end{array}\right|\ \,=\ \, \lambda^2+\lambda-2\ \,=\ \, (\lambda-1)(\lambda+2)\ \,=\ \,0 has two different real roots: :math:`\ \,\lambda_1=1\,,\ \,\lambda_2=-2\,.` The eigenvectors :math:`\ \boldsymbol{v}_1\,,\ \boldsymbol{v}_2\ \,` associated with the eigenvalues :math:`\ \lambda_1\,,\ \,\lambda_2\ \,` may be determined from the equations :eq:`hom_set`: .. math:: \begin{array}{llll} \left[\begin{array}{cc} 1 & -1 \\ 4 & -4 \end{array}\right]\ \left[\begin{array}{c} \beta_1 \\ \beta_2 \end{array}\right]\ =\ \left[\begin{array}{c} 0 \\ 0 \end{array}\right]\,: & \beta_1=\beta_2=\beta\,, & \boldsymbol{v}_1\,=\,\beta\ \left[\begin{array}{c} 1 \\ 1 \end{array}\right]\,, & \beta\in R\!\smallsetminus\!\{0\}\,; \\ \\ \left[\begin{array}{cc} 4 & -1 \\ 4 & -1 \end{array}\right]\ \left[\begin{array}{c} \beta_1 \\ \beta_2 \end{array}\right]\ =\ \left[\begin{array}{c} 0 \\ 0 \end{array}\right]\,: & \beta_2=4\,\beta_1=4\,\beta\,, & \boldsymbol{v}_2\,=\,\beta\ \left[\begin{array}{c} 1 \\ 4 \end{array}\right]\,, & \beta\in R\!\smallsetminus\!\{0\}\,. \end{array} Taking :math:`\,\beta=1\ ` we obtain two linearly independent particular solutions: .. math:: \boldsymbol{x}^1(t)\ \,=\ \, e^{\;t}\ \boldsymbol{v}_1\ \,=\ \, e^{\;t}\ \left[\begin{array}{c} 1 \\ 1 \end{array}\right]\,,\qquad \boldsymbol{x}^2(t)\ \,=\ \, e^{\,-2\,t}\ \,\boldsymbol{v}_2\ \,=\ \, e^{\,-2\,t}\ \left[\begin{array}{c} 1 \\ 4 \end{array}\right]\,, which comprise the general solution: .. math:: \begin{array}{c} \boldsymbol{x}(t)\,=\,c_1\ \boldsymbol{x}^1(t)\,+\,c_2\ \boldsymbol{x}^2(t)\ : \\ \\ \left[\begin{array}{c} x_1(t) \\ x_2(t) \end{array}\right]\ =\ c_1\ e^{\;t}\ \left[\begin{array}{c} 1 \\ 1 \end{array}\right]\ +\ c_2\ e^{\,-2\,t}\ \left[\begin{array}{c} 1 \\ 4 \end{array}\right]\,, \\ \\ \qquad \begin{cases}\ \begin{array}{l} x_1(t)\ =\ c_1\ e^{\;t}\,+\,c_2\ e^{\,-2\,t} \\ x_2(t)\ =\ c_1\ e^{\;t}\,+\,4\,c_2\ e^{\,-2\,t} \end{array}\end{cases} \qquad c_1,c_2\in R\,. \end{array} \; **Case 2.** The equation :eq:`char_eqn` has :math:`\,n\ ` different roots :math:`\ \lambda_1,\,\lambda_2,\,\ldots,\,\lambda_n\,,` :math:`\\` including complex non-real roots. Discussion and the formulae :eq:`spec_sols` and :eq:`gen_sol` from Case 1. are still valid, but now the particular solutions corresponding to the non-real roots are also non-real. However, by suitable composition of these solutions one may obtain the system of :math:`\,n\,` linearly independent real solutions. First note that since the matrix :math:`\,\boldsymbol{A}\ ` is real, so the complex non-real roots of the characteristic equation go in pairs: if :math:`\,\lambda\in C\!\smallsetminus\! R\ ` is in the set of roots then so is :math:`\,\lambda^*\,,\ ` and if :math:`\,\boldsymbol{v}\in C^n\ ` is an eigenvector of the matrix :math:`\,\boldsymbol{A}\ ` for the eigenvalue :math:`\ \lambda,\ \,` then :math:`\ \boldsymbol{v}^*\ ` is an eigenvector for the eigenvalue :math:`\ \lambda^*:` .. math:: \boldsymbol{A}\,\boldsymbol{v}\ =\ \lambda\,\boldsymbol{v} \qquad\Leftrightarrow\qquad \boldsymbol{A}\,\boldsymbol{v}^*\ =\ \lambda^*\,\boldsymbol{v}^*\,. The particular solutions corresponding to the roots :math:`\ \lambda\ \,` and :math:`\ \,\lambda^*\ ` are conjugate to each other: .. math:: e^{\,\lambda^*\,t}\;\boldsymbol{v}^*\ =\ \left[\,e^{\,\lambda\,t}\;\boldsymbol{v}\,\right]^*\,. We write the solution :math:`\ \,\boldsymbol{x}(t)\,=\,e^{\,\lambda\,t}\,\boldsymbol{v}\,\ ` corresponding to the root :math:`\,\lambda\,\ ` as .. math:: \boldsymbol{x}(t)\,=\,\boldsymbol{x}_1(t)+i\ \boldsymbol{x}_2(t)\,, where :math:`\ \,\boldsymbol{x}_1(t)\,=\,\text{re}\ \,\boldsymbol{x}(t)\,,\ \, \boldsymbol{x}_2(t)\,=\,\text{im}\ \,\boldsymbol{x}(t)\ \,` are functions with values in :math:`\,R^n\,.` Then the solution :math:`\ \,\boldsymbol{x}^*(t)\,=\,e^{\,\lambda^*\,t}\,\boldsymbol{v}^*\,\ ` corresponding to the root :math:`\,\lambda^*\,\ ` is given by .. math:: \boldsymbol{x}^*(t)\,=\,\boldsymbol{x}_1(t)-i\ \boldsymbol{x}_2(t)\,. .. Niech :math:`\ \ e^{\,\lambda\,t}\,\boldsymbol{v}\,=\,\boldsymbol{x}(t)\,=\, \boldsymbol{x}_1(t)+i\ \boldsymbol{x}_2(t)\,,\ \ ` gdzie :math:`\ \ \boldsymbol{x}_1(t)\,=\,\text{re}\ \boldsymbol{x}(t)\,,\ \ \boldsymbol{x}_2(t)\,=\,\text{im}\ \boldsymbol{x}(t)` :math:`\\` są funkcjami o wartościach w :math:`\,R^n\,.\ ` Wtedy :math:`\ \,e^{\,\lambda^*\,t}\;\boldsymbol{v}^*\,=\, \boldsymbol{x}_1(t)-i\ \boldsymbol{x}_2(t)\,.\ ` In fact, the real part :math:`\ \boldsymbol{x}_1(t)\ \,` and :math:`\,` the imaginary part :math:`\ \boldsymbol{x}_2(t)\ \,` of the solution :math:`\ \boldsymbol{x}(t)\ \,` are also solutions of the equation :eq:`mat_eqn`. :math:`\,` Indeed, .. math:: \boldsymbol{\dot{x}}_1(t)+i\ \boldsymbol{\dot{x}}_2(t)\ =\ \boldsymbol{\dot{x}}(t)\ =\ \boldsymbol{A}\ \boldsymbol{x}(t)\ =\ \boldsymbol{A}\ [\,\boldsymbol{x}_1(t)+i\ \boldsymbol{x}_2(t)\,]\ =\ \boldsymbol{A}\ \boldsymbol{x}_1(t)+i\ \boldsymbol{A}\ \boldsymbol{x}_2(t) and comparing the real and the imaginary parts of the side expressions gives .. math:: \boldsymbol{\dot{x}}_1(t)\ =\ \boldsymbol{A}\ \boldsymbol{x}_1(t)\,,\qquad \boldsymbol{\dot{x}}_2(t)\ =\ \boldsymbol{A}\ \boldsymbol{x}_2(t)\,. Note also that linear independence of the solutions :math:`\ \boldsymbol{x}(t)\,,\ \boldsymbol{x}^*(t)\ ` is equivalent to the linear independence of the solutions :math:`\ \boldsymbol{x}_1(t)\,,\ \boldsymbol{x}_2(t)\,.\ ` Hence, describing the general solution of the system :eq:`set_diff` in the expression :eq:`gen_sol`, we can replace a linear combination of complex solutions :math:`\ \boldsymbol{x}(t)\,,\ \boldsymbol{x}^*(t)\ ` by a linear combination of real solutions :math:`\ \boldsymbol{x}_1(t)\,,\ \boldsymbol{x}_2(t)\,,\ ` so that the general solution is real. **Exercise.** :math:`\,` To complete a discussion of Cases :math:`\,` 1. :math:`\,` and :math:`\,` 2. :math:`\,` prove that: 1. If the vectors :math:`\ \boldsymbol{v}_1,\,\boldsymbol{v}_2,\,\ldots,\,\boldsymbol{v}_n\in C^n\ ` are linearly independent, then for :math:`\ \alpha_i\in C\!\smallsetminus\!\{0\}\,,\ ` :math:`i=1,2,\ldots,n\,,\ \,` the vectors :math:`\ \ \alpha_1\,\boldsymbol{v}_1,\ \ \alpha_2\,\boldsymbol{v}_2,\ \ldots,\ \alpha_n\,\boldsymbol{v}_n` are also linearly independent (in the expressions :eq:`spec_sols` for particular solutions :math:`\ \alpha_i=\exp{(\lambda_i\,t)}\,,\ i=1,2,\ldots,n`). 2. If the vector :math:`\ \boldsymbol{x}\in C^n\ ` is of the form :math:`\ \boldsymbol{x}=\boldsymbol{x}_1+i\ \boldsymbol{x}_2\,,\` where :math:`\ \, \boldsymbol{x}_1,\boldsymbol{x}_2\in R^n\,,\ ` then the linear independence of the vectors :math:`\ \boldsymbol{x},\,\boldsymbol{x}^*\ ` is equivalent to the linear independence of the vectors :math:`\ \boldsymbol{x}_1,\boldsymbol{x}_2\,.` **Example 2.** :math:`\,` We solve a linear system of equations: .. math:: :nowrap: \begin{alignat*}{3} \dot{x}_1 & {\ } = {\ } & 3\,x_1 & {\ } - {\ } & x_2 \\ \dot{x}_2 & {\ } = {\ } & x_1 & {\ } + {\ } & 3\,x_2 \end{alignat*} The characteristic equation :eq:`char_eqn` of the matrix :math:`\ \,\boldsymbol{A}\ =\ \left[\begin{array}{rr} 3 & -1 \\ 1 & 3 \end{array}\right]:` .. math:: \left|\begin{array}{cc} 3-\lambda & -1 \\ 1 & 3-\lambda \end{array}\right|\ \,=\ \, \lambda^2-6\,\lambda+10\ \,=\ \,0 has two different complex roots, conjugate to each other: .. math:: \lambda_1\,=\,3+i\,,\qquad\lambda_2\,=\,3-i\,. The eigenvectors :math:`\ \boldsymbol{v}_1\ ` associated with the eigenvalues :math:`\ \lambda_1\ ` may be determined from the equation :eq:`hom_set`: .. math:: \left[\begin{array}{rr} -i & -1 \\ 1 & -i \end{array}\right] \left[\begin{array}{c} \beta_1 \\ \beta_2 \end{array}\right] \ =\ \left[\begin{array}{c} 0 \\ 0 \end{array}\right]\,, \quad\text{so}\quad\ \begin{cases}\begin{array}{r} -i\ \beta_1 - \beta_2 = 0 \\ \beta_1 - i\ \beta_2 = 0 \end{array}\end{cases}:\quad \beta_2=-i\ \beta_1\,. The solution is :math:`\ \ \beta_1=\beta\,,\ \ \beta_2=-i\ \beta\,,\ \ \beta\in C\,,\ \ ` so :math:`\ \ \boldsymbol{v}_1=\beta\ \left[\begin{array}{r} 1 \\ -i \end{array}\right]\,,\ \ \beta\in C\!\smallsetminus\!\{0\}\,.` The eigenvectors associated with the eigenvalue :math:`\,\lambda_2=\lambda_1^*\ \ ` are :math:`\ \ \boldsymbol{v}_2=\beta\ \left[\begin{array}{r} 1 \\ -i \end{array}\right]^* = \beta\ \left[\begin{array}{r} 1 \\ i \end{array}\right]\,,\ \ \beta\in C\!\smallsetminus\!\{0\}\,.` :math:`\\` If :math:`\,\beta=1\,,\ ` a particular solution associated with the eigenvalue :math:`\ \lambda_1\,:` .. math:: \begin{array}{rcl} \boldsymbol{x}^1(t) & = & e^{\,\lambda_1\,t}\ \boldsymbol{v}_1\ =\ e^{\,(3+i)\,t}\ \left[\begin{array}{r} 1 \\ -i \end{array}\right]\ =\ e^{\,3\,t}\ e^{\,i\,t}\ \left[\begin{array}{r} 1 \\ -i \end{array}\right]\ = \\ \\ & = & e^{\,3\,t}\ (\cos{t}+i\ \sin{t})\ \left[\begin{array}{r} 1 \\ -i \end{array}\right]\ =\ e^{\,3\,t}\ \left[\begin{array}{c} \cos{t}+i\ \sin{t} \\ \sin{t}-i\ \cos{t} \end{array}\right]\ = \\ \\ & = & e^{\,3\,t}\ \left[\begin{array}{c} \cos{t} \\ \sin{t} \end{array}\right]\ +\ i\ e^{\,3\,t}\ \left[\begin{array}{r} \sin{t} \\ -\cos{t} \end{array}\right] \end{array} is of the form :math:`\ \boldsymbol{x}^1(t)=\boldsymbol{x}_1(t)+i\ \boldsymbol{x}_2(t)\,,\ ` where :math:`\ \boldsymbol{x}_1(t)\,,\ \boldsymbol{x}_2(t)\ ` are functions with values in :math:`\ R^2\,.` :math:`\\` Because both the real and the complex part of the complex solution are solutions of the system, so the general solution is given by their arbitary linear combination: .. math:: \begin{array}{c} \boldsymbol{x}(t)\ =\ c_1\ \boldsymbol{x}_1(t)\ +\ c_2\ \boldsymbol{x}_2(t)\ : \\ \\ \left[\begin{array}{c} x_1(t) \\ x_2(t) \end{array}\right]\ \ =\ \ e^{\,3\,t}\ \left(\ c_1\ \left[\begin{array}{c} \cos{t} \\ \sin{t} \end{array}\right]\ \,+\ \, c_2\ \left[\begin{array}{r} \sin{t} \\ -\cos{t} \end{array}\right]\ \,\right) \\ \\ \begin{cases}\begin{array}{c} \ x_1(t)\ \,=\ \,e^{\,3\,t}\ (c_1\,\cos{t}\,+\,c_2\,\sin{t}) \\ \ x_2(t)\ \,=\ \,e^{\,3\,t}\ (c_1\,\sin{t}\,-\,c_2\,\cos{t}) \end{array}\end{cases}\qquad c_1,c_2\in R\,. \end{array} **Case 3.** Some of the eigenvalues of the matrix :math:`\,\boldsymbol{A}\ ` are multiple roots of the characteristic polynomial but their geometric and algebraic multiplicities are equal. This means that for each root of the characteristic polynomial with multilplicity :math:`\,k` there are :math:`\,k\ ` linearly independent eigenvectors of the matrix :math:`\,\boldsymbol{A}\,.` .. Sytuacja ta nie wymaga wprowadzania nowych elementów do postępowania opisanego w przypadkach 1. i 2. In this situation we can apply the method described in Cases :math:`\,` 1. :math:`\,` and :math:`\,` 2 :math:`\,` without any change. **Example 3.** :math:`\,` We determine the general solution of the system .. math:: :nowrap: \begin{alignat*}{4} \dot{x}_1 & {\ } = {\ } & -8\ x_1 & {\ } + {\ } & 18\ x_2 & {\ } + {\ } & 9\ x_3 \\ \dot{x}_1 & {\ } = {\ } & -9\ x_1 & {\ } + {\ } & 19\ x_2 & {\ } + {\ } & 9\ x_3 \\ \dot{x}_1 & {\ } = {\ } & 12\ x_1 & {\ } - {\ } & 24\ x_2 & {\ } - {\ } & 11\ x_3 \end{alignat*} The characteristic equation of the matrix :math:`\,\boldsymbol{A}:` .. math:: \left|\begin{array}{ccc} -8-\lambda & 18 & 9 \\ -9 & 19-\lambda & 9 \\ 12 & -24 & -11-\lambda \end{array}\right|\ =\ \lambda^3-3\,\lambda+2\ =\ (\lambda-1)^2\,(\lambda+2)\ =\ 0 has a double root :math:`\,\lambda_{1,2}=1\ ` and a single root :math:`\,\lambda_3=-2\,.` For the eigenvalue :math:`\,\lambda_{1,2}\ ` the system of equations :eq:`hom_set` reduces to .. math:: \beta_1-2\,\beta_2-\beta_3\ =\ 0\,,\qquad\text{so that}\qquad \beta_3\ =\ \beta_1-2\,\beta_2\,,\quad\beta_1,\beta_2\in R\,. The geometric multiplicity of the eigenvalue :math:`\,\lambda_{1,2}\ ` is the same as the algebraic multiplicity and equals 2, because its associated eigenvectors of the form .. math:: \boldsymbol{v}_{1,2}\ =\ \left[\begin{array}{c} \beta_1 \\ \beta_2 \\ \beta_1-2\,\beta_2 \end{array}\right]\ =\ \beta_1\ \left[\begin{array}{r} 1 \\ 0 \\ 1 \end{array}\right]\ +\ \beta_2\ \left[\begin{array}{r} 0 \\ 1 \\ -2 \end{array}\right]\,,\qquad \begin{array}{c} \beta_1,\,\beta_2\in R\,, \\ \beta_1^2+\beta_2^2>0 \end{array} comprise (together with the zero vector) a 2-dimensional subspace. Hence, the eigenvalue :math:`\,\lambda_{1,2}=1\ ` gives rise to two linearly independent particular solutions: .. math:: :label: sol_12 \boldsymbol{x}^1(t)\ \,=\ \,e^{\,t}\ \left[\begin{array}{r} 1 \\ 0 \\ 1 \end{array}\right] \qquad\text{and}\qquad \boldsymbol{x}^2(t)\ \,=\ \,e^{\,t}\ \left[\begin{array}{r} 0 \\ 1 \\ -2 \end{array}\right]\,. The eigenvectors of the matrix :math:`\,\boldsymbol{A}\ ` associated with the eigenvalue :math:`\,\lambda_3=-2\ ` are of the form .. math:: :label: sol_3 \boldsymbol{v}_3\ =\ \beta\ \left[\begin{array}{r} 3 \\ 3 \\ -4 \end{array}\right]\,,\quad \beta\in R\!\smallsetminus\!\{0\}\,, \qquad\text{so that}\qquad \boldsymbol{x}^3(t)\ \,=\ \,e^{\,-2\,t}\ \left[\begin{array}{r} 3 \\ 3 \\ -4 \end{array}\right]\,. The general solution of the system is an arbitrary linear combination of the solutions :math:`\,` :eq:`sol_12` :math:`\,` and :math:`\,` :eq:`sol_3`: .. math:: \begin{array}{l} \boldsymbol{x}(t)\ \,=\ \,c_1\ \boldsymbol{x}^1(t)\ +\ c_2\ \boldsymbol{x}^2(t)\ +\ c_3\ \boldsymbol{x}^3(t)\,: \\ \\ \begin{cases}\ \ \begin{array}{l} x_1(t)\ =\ c_1\ e^{\,t}\,+\,3\ c_3\ e^{\,-2\,t} \\ x_2(t)\ =\ c_2\ e^{\,t}\,+\,3\ c_3\ e^{\,-2\,t} \\ x_3(t)\ =\ (c_1-2\,c_2)\ e^{\,t}\,-\,4\ c_3\ e^{\,-2\,t} \end{array}\end{cases}\qquad c_1,\,c_2,\,c_3\,\in R\,. \end{array} **Case 4.** For some of the eigenvalues of the matrix :math:`\,\boldsymbol{A}\ ` the geometric multilplicty is different (smaller) from the algebraic multilplicity. .. Chociaż nie istnieje wtedy baza przestrzeni :math:`\,R^n\ ` złożona z wektorów własnych macierzy :math:`\,\boldsymbol{A},\ ` to można skonstruować *bazę Jordana* tej przestrzeni. Wykorzystując wektory tej bazy można utworzyć zbiór :math:`\,n\ ` liniowo niezależnych rzeczywistych rozwiązań układu :eq:`set_diff`. In this case a basis of the space :math:`\,R^n\ ` cannot be formed exclusively from the eigenvectors of the matrix :math:`\,\boldsymbol{A}.\ ` However, one can use vectors of a *Jordan basis* of this space to form a set consisting of :math:`\,n\ ` linearly independent real solutions of the system :eq:`set_diff`. We will show on an example, without developping a general theory, that such a construction is possible. **Example 4.** :math:`\,` We solve a system of linear differential equations .. math:: :nowrap: \begin{alignat*}{4} \dot{x}_1 & {\ } = {\ } & 4\ x_1 & {\ } + {\ } & x_2 & {\ } + {\ } & x_3 \\ \dot{x}_1 & {\ } = {\ } & 2\ x_1 & {\ } + {\ } & 4\ x_2 & {\ } + {\ } & x_3 \\ \dot{x}_1 & {\ } = {\ } & & & x_2 & {\ } + {\ } & 4\ x_3 \end{alignat*} The characteristic equation of the matrix :math:`\ \ \boldsymbol{A}\ =\ \left[\begin{array}{ccc} 4 & 1 & 1 \\ 2 & 4 & 1 \\ 0 & 1 & 4 \end{array}\right]:` .. math:: \left|\begin{array}{ccc} 4-\lambda & 1 & 1 \\ 2 & 4-\lambda & 1 \\ 0 & 1 & 4-\lambda \end{array}\right|\ =\ \lambda^3-12\,\lambda^2+45\,\lambda-54\ =\ (\lambda-3)^2\,(\lambda-6)\ =\ 0 has a double root :math:`\,\lambda_{1,2}=3\ ` and a single root :math:`\,\lambda_3=6\,.` :math:`\\` The coordinates :math:`\ \beta_1,\beta_2,\beta_3\ ` of the eigenvectors associated with the eigenvalue :math:`\,\lambda_{1,2}\ ` may be determined from the equation .. math:: \left[\begin{array}{ccc} 1 & 1 & 1 \\ 2 & 1 & 1 \\ 0 & 1 & 1 \end{array}\right]\ \left[\begin{array}{c} \beta_1 \\ \beta_2 \\ \beta_3 \end{array}\right]\ =\ \left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right]\,, \quad\text{so}\quad \begin{cases}\begin{array}{r} \beta_1+\beta_2+\beta_3=0 \\ 2\,\beta_1+\beta_2+\beta_3=0 \\ \beta_2+\beta_3=0 \end{array}\end{cases}:\quad \begin{cases}\begin{array}{l} \beta_1=0 \\ \beta_3=-\beta_2 \end{array}\end{cases} Te solution is given by :math:`\ \ \beta_1=0\,,\ \ \beta_2=\beta\,,\ \ \beta_3=-\beta\,,\ \ \beta\in R\,,\ ` so the eigenvectors .. math:: :label: v1 \boldsymbol{v}_1\ =\ \beta\ \left[\begin{array}{r} 0 \\ 1 \\ -1 \end{array}\right]\,,\quad \beta\in R\!\smallsetminus\!\{0\} comprise (together with the zero vector) a 1-dimensional subspace: the geometric multiplicity of the eigenvalue :math:`\,\lambda_{1,2}\ ` is equal to 1. Hence we obtain a solution of the system of linear differential equations: .. math:: :label: x1 \boldsymbol{x}^1(t)\ \,=\ \, e^{\,3\,t}\ \left[\begin{array}{r} 0 \\ 1 \\ -1 \end{array}\right]\,. The second solution associated with the eigenvalue :math:`\,\lambda_{1,2}\ ` may be obtained from the construction of *Jordan basis* :math:`\,\mathcal{B}_{1,2}=(\boldsymbol{w}_1,\boldsymbol{w}_2)\,.\ ` The vectors :math:`\,\boldsymbol{w}_1,\boldsymbol{w}_2\in R^3\!\smallsetminus\!\{\boldsymbol{0}\}\ ` are defined by the conditions .. math:: :label: w1_w2 \begin{cases}\ \begin{array}{l} (\boldsymbol{A}-\lambda_{1,2}\ \boldsymbol{I}_3)\ \boldsymbol{w}_1\ =\ \boldsymbol{0} \\ (\boldsymbol{A}-\lambda_{1,2}\ \boldsymbol{I}_3)\ \boldsymbol{w}_2\ =\ \boldsymbol{w}_1 \end{array}\end{cases} \quad\text{so}\qquad\ \begin{cases}\ \begin{array}{l} \boldsymbol{A}\,\boldsymbol{w}_1\ =\ \lambda_{1,2}\ \boldsymbol{w}_1 \\ \boldsymbol{A}\,\boldsymbol{w}_2\ =\ \boldsymbol{w}_1+\lambda_{1,2}\ \boldsymbol{w}_2 \end{array}\end{cases} We will show that :math:`\ \,\boldsymbol{w}_1\,` and :math:`\boldsymbol{w}_2\ \,` are linearly independent. Indeed, let .. math:: \alpha_1\ \boldsymbol{w}_1\ +\ \alpha_2\ \boldsymbol{w}_2\ \,=\ \,\boldsymbol{0}\,,\qquad \alpha_1,\,\alpha_2\in R\,. Multiply this equality on both sides from the left by the matrix :math:`\,\boldsymbol{A}-\lambda_{1,2}\ \boldsymbol{I}_3\ .` :math:`\\` The conditions :eq:`w1_w2` imply .. math:: :nowrap: \begin{eqnarray*} \alpha_1\ (\boldsymbol{A}-\lambda_{1,2}\ \boldsymbol{I}_3)\ \boldsymbol{w}_1\ +\ \alpha_2\ (\boldsymbol{A}-\lambda_{1,2}\ \boldsymbol{I}_3)\ \boldsymbol{w}_2 & = & \boldsymbol{0} \\ \text{so}\quad\alpha_2\ \boldsymbol{w}_1 & = & \boldsymbol{0}\,,\quad \text{and thus}\quad\alpha_2=0\,, \\ \text{but then}\quad\alpha_1\ \boldsymbol{w}_1 & = & \boldsymbol{0}\,, \quad\text{so}\quad\alpha_1=0\,. \end{eqnarray*} We check now that the function .. math:: :label: x2_compact \boldsymbol{x}^2(t)\ \,=\ \, \exp{(\lambda_{1,2}\;t)}\,\cdot\,(t\,\boldsymbol{w}_1\,+\,\boldsymbol{w}_2) is a solution to the considered system of differential equations. Indeed, by the equations :eq:`w1_w2` we have .. math:: :nowrap: \begin{eqnarray*} \boldsymbol{\dot{x}}^2(t) & = & \lambda_{1,2}\ \exp{(\lambda_{1,2}\;t)}\,\cdot\,(t\,\boldsymbol{w}_1\,+\,\boldsymbol{w}_2)\ +\ \exp{(\lambda_{1,2}\;t)}\,\cdot\,\boldsymbol{w}_1\ = \\ & = & \exp{(\lambda_{1,2}\;t)}\,\cdot\, \left[\ \,t\,\cdot\,\lambda_{1,2}\;\boldsymbol{w}_1\,+\, (\boldsymbol{w}_1+\lambda_{1,2}\,\boldsymbol{w}_2)\ \right]\ = \\ & = & \exp{(\lambda_{1,2}\;t)}\,\cdot\, (\ t\,\cdot\,\boldsymbol{A}\,\boldsymbol{w}_1\,+\,\boldsymbol{A}\,\boldsymbol{w}_2\ )\ = \\ & = & \boldsymbol{A}\ \,[\ \,\exp{(\lambda_{1,2}\;t)}\,\cdot\, (t\,\boldsymbol{w}_1\,+\,\boldsymbol{w}_2)\ ]\ = \\ & = & \boldsymbol{A}\ \boldsymbol{x}^2(t)\,. \end{eqnarray*} We now determine the vectors :math:`\,\boldsymbol{w}_1\ \ \text{and}\ \ \boldsymbol{w}_2\,.\ ` Since :math:`\,\boldsymbol{w}_1\ ` is an eigenvector of the matrix :math:`\,\boldsymbol{A}\ ` associated with the eigenvalue :math:`\,\lambda_{1,2}\,,\ ` we may assume :math:`\ \,\boldsymbol{w}_1=\boldsymbol{v}_1\,.\ ` Taking :math:`\ \beta=1\ ` in the equation :eq:`v1`, we obtain: .. math:: \boldsymbol{w}_1\ =\ \left[\begin{array}{r} 0 \\ 1 \\ -1 \end{array}\right]\,. The vector :math:`\ \,\boldsymbol{w}_2=[\,\gamma_i\,]_3\ \,` may be calculated from the equation: :math:`\ \ (\boldsymbol{A}-\lambda_{1,2}\,\boldsymbol{I}_3)\,\boldsymbol{w}_2=\boldsymbol{w}_1\,,\ \ ` that is .. math:: \left[\begin{array}{ccc} 1 & 1 & 1 \\ 2 & 1 & 1 \\ 0 & 1 & 1 \end{array}\right]\ \left[\begin{array}{c} \gamma_1 \\ \gamma_2 \\ \gamma_3 \end{array}\right]\ =\ \left[\begin{array}{r} 0 \\ 1 \\ -1 \end{array}\right]\,, \quad\text{and so}\quad \begin{cases}\begin{array}{r} \gamma_1+\gamma_2+\gamma_3\,=\,0 \\ 2\,\gamma_1+\gamma_2+\gamma_3\,=\,1 \\ \gamma_2+\gamma_3\,=\,-1 \end{array}\end{cases} The solution is: :math:`\ \ \gamma_1=1,\ \ \gamma_2=\gamma,\ \ \gamma_3=-1-\gamma,\quad\gamma\in R.\ \,` For :math:`\ \gamma=0\ ` we obtain .. math:: \boldsymbol{w}_2\ =\ \left[\begin{array}{r} 1 \\ 0 \\ -1 \end{array}\right]\,. The solution :eq:`x2_compact` of the system of differential equations takes now an explicit form: .. math:: :label: x2 \boldsymbol{x}^2(t)\ \,=\ \, e^{\,3\,t}\ \left[\begin{array}{c} 1 \\ t \\ -1-t \end{array}\right]\,. In this way we have two linearly independent solutions, :math:`\ \boldsymbol{x}^1(t)\ ` and :math:`\ \boldsymbol{x}^2(t)\,,\ ` associated with the eigenvalue :math:`\ \lambda_{1,2}=3\ ` of the matrix :math:`\,\boldsymbol{A}\,.` It remains to determine the solution associated with the (single) eigenvalue :math:`\ \lambda_3=6.\ ` :math:`\\` The associated eigenvectors :math:`\,\boldsymbol{v}_3=[\,\beta_i\,]_3\ ` are computed from the equation .. math:: \left[\begin{array}{rrr} -2 & 1 & 1 \\ 2 & -2 & 1 \\ 0 & 1 & -2 \end{array}\right]\ \left[\begin{array}{c} \beta_1 \\ \beta_2 \\ \beta_3 \end{array}\right]\ =\ \left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right]\,, \quad\text{so}\quad \begin{cases}\ \begin{array}{r} -\,2\,\beta_1\,+\,\beta_2\,+\,\beta_3\,=\,0 \\ 2\,\beta_1\,-\,2\,\beta_2\,+\,\beta_3\,=\,0 \\ \beta_2\,-\,2\,\beta_3\,=\,0 \end{array}\end{cases}. Hence: :math:`\quad\beta_1=3\,\beta\,,\ \ \beta_2=4\,\beta\,,\ \ \beta_3=2\,\beta\,,\ \ \beta\in R\,,\quad` and thus :math:`\quad\boldsymbol{v}_3\ =\ \beta\ \left[\begin{array}{c} 3 \\ 4 \\ 2 \end{array}\right]\,, \ \ \beta\in R\!\smallsetminus\!\{0\}\,,` and the solution of the system of differential equations for this eigenvalue is given by .. math:: :label: x3 \boldsymbol{x}^3(t)\ \,=\ \, e^{\,6\,t}\ \left[\begin{array}{r} 3 \\ 4 \\ 2 \end{array}\right]\,. The vector :math:`\,\boldsymbol{v}_3\ ` (eg. for :math:`\,\beta=1`) may be taken as the third vector :math:`\,\boldsymbol{w}_3\ ` of the Jordan basis in :math:`\,R^3\,,\ ` corresponding to the matrix :math:`\,\boldsymbol{A}:` .. math:: \mathcal{B}\ =\ (\boldsymbol{w}_1,\boldsymbol{w}_2,\boldsymbol{w}_3)\ \ =\ \ \left(\ \ \left[\begin{array}{r} 0 \\ 1 \\ -1 \end{array}\right]\,,\ \left[\begin{array}{r} 1 \\ 0 \\ -1 \end{array}\right]\,,\ \left[\begin{array}{r} 3 \\ 4 \\ 2 \end{array}\right] \ \ \right)\,. The general solution of the system of differential equations is an arbitrary linear combination of the particular solutions :math:`\,` :eq:`x1`, :math:`\,` :eq:`x2` :math:`\,` and :math:`\,` :eq:`x3` : .. math:: \begin{array}{c} \boldsymbol{x}(t)\ \,=\ \,c_1\ \boldsymbol{x}^1(t)\ +\ c_2\ \boldsymbol{x}^2(t)\ +\ c_3\ \boldsymbol{x}^3(t) : \\ \\ \left[\begin{array}{c} x_1(t) \\ x_2(t) \\ x_3(t) \end{array}\right]\ =\ e^{\,3\,t}\ \left[\begin{array}{c} c_2 \\ c_1\,+\,c_2\,t \\ -\,c_1\,-\,c_2\,(1+t) \end{array}\right]\ +\ c_3\ e^{\,6\,t}\ \left[\begin{array}{c} 3 \\ 4 \\ 2 \end{array}\right] \\ \\ \qquad\ \ \begin{cases}\ \ \begin{array}{l} x_1(t)\ \,=\ \,c_2\ e^{\,3\,t}\ +\ 3\,c_3\ e^{\,6\,t} \\ x_2(t)\ \,=\ \,(c_1+c_2\;t)\ e^{\,3\,t}\ +\ 4\,c_3\ e^{\,6\,t} \\ x_3(t)\ \,=\ \,-\ [\,c_1+c_2\,(1+t)\,]\ e^{\,3\,t}\ +\ 2\,c_3\ \ e^{\,6\,t} \end{array}\end{cases} c_1,\,c_2,\,c_3\in R\,. \end{array}