Application to Homogeneous Systems of Equations ----------------------------------------------- We will now apply a theory of linear transformations of vector spaces to describe the set of solutions of homogeneous system of linear equations over a field :math:`\,K`: .. math:: :label: set_eqn_0 \begin{array}{r} a_{11}\,x_1\; + \ \,a_{12}\,x_2\; + \ \,\ldots\ + \ \;a_{1n}\,x_n \ \, = \ \ 0 \\ a_{21}\,x_1\; + \ \,a_{22}\,x_2\; + \ \,\ldots\ + \ \;a_{2n}\,x_n \ \, = \ \ 0 \\ \qquad\qquad\,\ldots\qquad\quad\ldots\qquad\quad\ldots\qquad\ldots\qquad\ \ \,\ldots \\ a_{m1}\,x_1\; + \ \,a_{m2}\,x_2\; + \ \,\ldots\ + \ \;a_{mn}\,x_n \ \, = \ \ 0 \end{array} The system has a matrix form :math:`\quad\boldsymbol{A}\boldsymbol{X}\,=\,\boldsymbol{0}\,,\quad` where .. math:: \boldsymbol{A}\ =\ \left[\begin{array}{cccc} a_{11} & a_{12} & \ldots & a_{1n} \\ a_{21} & a_{22} & \ldots & a_{2n} \\ \ldots & \ldots & \ldots & \ldots \\ a_{m1} & a_{m2} & \ldots & a_{mn} \end{array} \right]\,,\quad \boldsymbol{X}\ =\ \left[\begin{array}{c} x_1 \\ x_2 \\ \dots \\ x_n \end{array}\right]\,,\quad \boldsymbol{0}\ =\ \left[\begin{array}{c} 0 \\ 0 \\ \dots \\ 0 \end{array}\right]\in K^m\,. We define the set of solutions of the system :eq:`set_eqn_0` as .. math:: S_0\ :\,=\ \{\,\boldsymbol{X}\in K^n:\ \boldsymbol{A}\boldsymbol{X}=\boldsymbol{0}\,\}\,. Of course, :math:`\ \,S_0\subset K^n.\ \,` The properties of the set :math:`\ S_0\ ` are better described in .. admonition:: Theorem 9. :math:`\\` The set of solutions of homogeneous system of linear equations :eq:`set_eqn_0` is a vector space over a field :math:`\,K\ ` (subspace of the space :math:`\,K^n`), :math:`\,` whose dimension equals the difference of the number of unknowns and the rank of the coefficient matrix :math:`\boldsymbol{A}:` .. math:: :label: sol_0 S_0\,<\,K^n,\qquad\dim\,S_0\,=\,n-\text{rk}\,\boldsymbol{A}\,. .. gdzie :math:`\,r\ ` jest rzędem macierzy :math:`\,\boldsymbol{A}.` **Proof.** The subset :math:`\ S_0\ ` of the space :math:`\,K^n\ ` is a subspace because it is closed under addition of vectors and their multiplications by scalars from the field :math:`\,K.\ ` Indeed, if :math:`\qquad\boldsymbol{X}_1,\,\boldsymbol{X}_2\,\in\,S_0: \qquad\boldsymbol{A}\boldsymbol{X}_1=\,\boldsymbol{0}\,, \quad\boldsymbol{A}\boldsymbol{X}_2=\,\boldsymbol{0}\,,` then :math:`\qquad \boldsymbol{A}\,(\boldsymbol{X}_1+\boldsymbol{X}_2)\ =\ \boldsymbol{A}\boldsymbol{X}_1+\boldsymbol{A}\boldsymbol{X}_2\ =\ \boldsymbol{0}\,, \qquad \boldsymbol{A}\,(c\,\boldsymbol{X}_1)\ =\ c\,(\boldsymbol{A}\boldsymbol{X}_1)\ =\ \boldsymbol{0}\,,` so :math:`\qquad \boldsymbol{X}_1+\boldsymbol{X}_2\,\in\,S_0\,,\qquad c\,\boldsymbol{X}_1\in S_0\,,\quad c\in K\,.` .. Podzbiór :math:`\,S_0\ ` przestrzeni :math:`\,K^n\ ` jest domknięty ze względu na dodawanie wektorów i mnożenie ich przez liczby z ciała :math:`\,K\ ` For the proof of the second part of the hypothesis, denote :math:`\ r\,:\,=\,\text{rk}\,\boldsymbol{A}\,.\ ` Of course, :math:`\ r\le m,n\,.` The matrix :math:`\boldsymbol{A}\ ` has :math:`\ r\ ` linearly independent rows and the same number of linearly independent columns. Without loss of generality, we may assume that the linearly independent set is determined by first :math:`\ r\ ` rows, :math:`\,` and also by first :math:`\ r\ ` columns. If :math:`\ m>r,\ ` then we discard last :math:`\ m-r\ ` equations because each of them is a linear combination of the first :math:`\ r\ ` equations. .. Mamy więc do czynienia z układem :math:`\ r\ ` liniowo niezależnych równań o :math:`\,n\ ` niewiadomych. As a starting point of the further discussion we may take a set of :math:`\ r\ ` equations with :math:`\ n\ ` unknowns, :math:`\,` where :math:`\ r\le n.\ ` In this situation there are two possibilities. I.) :math:`\,` If :math:`\ r=n,\ ` we have a system with a square non-degenerate matix :math:`\boldsymbol{A}.\ ` This is a Cramer system which has only a zero solution: :math:`\ S_0=\{\boldsymbol{0}\}.\ ` In this case the equation :eq:`sol_0` is fulfilled: :math:`\ 0=\dim\,S_0=n-r.` II.) :math:`\,` Let :math:`\ r