Problems -------- **Exercise 1.** Give geometric interpretation of kernel and image of a linear operator :math:`\,F\ ` given by .. math:: F(\vec{r})\,:\,=\,\vec{a}\times\vec{r}\,,\qquad\vec{r}\in V\,, where :math:`\,\vec{a}\ ` is a fixed vector from 3-dimensional vector space :math:`\,V\,` of geometric vectors. .. gdzie :math:`\,V\ ` jest trójwymiarową przestrzenią wektorów geometrycznych, oraz :math:`\,\vec{0}\neq\vec{a}\ ` jest ustalonym wektorem. Describe defect and rank of this operator. :math:`\,` Does :math:`\,\text{def}\,F + \text{rk}\,F = \dim V\ ?` **Exercise 2.** In 3-dimensional vector space :math:`\,V\,` of geometric vectors with basis :math:`\ \mathcal{E}=(\vec{e}_1,\,\vec{e}_2,\,\vec{e}_3)\ ` consisting of three mutually perpendicular unit vectors, :math:`\,` we define a mapping .. math:: F(\vec{r})\,:\,=\,(\vec{b}\cdot\vec{r})\ \vec{a}\,, \qquad\vec{a},\vec{b},\vec{r}\in V,\quad\vec{a},\vec{b}\ -\ \text{fixed non-zero vectors}. 0. Justify that :math:`\,F\ ` is a linear operator. 1. What is geometric interpretation of kernel and image of the operator :math:`\,F\,?` 2. Describe defect and rank of this operator and check the condition :math:`\,\text{def}\,F + \text{rk}\,F = \dim V.` 3. Find the matrix :math:`\,M(F)\ ` of the operator :math:`\,F\,` in basis :math:`\,\mathcal{E}.` 4. Calculate rank of the matrix :math:`\,M(F)\ ` and :math:`\,` check that :math:`\,\text{rk}\,F = \text{rk}\,M(F).` **Exercise 3.** Let :math:`\,F\in\text{Hom}(V,W),\ ` where :math:`\,V\ ` and :math:`\ W\ ` are finite dimensional vector spaces over a field :math:`\,K.\ ` Verify correctness of the following statements for vectors :math:`\,v_1,\,v_2,\,\dots,\,v_r\in V\ ` (l.i. = linearly independent, :math:`\,` l.d. = linearly dependent): 1. :math:`\quad v_1,\,v_2,\,\dots,\,v_r\ \ -\ \ \text{l.i.} \qquad\Rightarrow\qquad Fv_1,\,Fv_2,\,\dots,\,Fv_r\ \ -\ \ \text{l.i.}` 2. :math:`\quad v_1,\,v_2,\,\dots,\,v_r\ \ -\ \ \text{l.d.} \qquad\Rightarrow\qquad Fv_1,\,Fv_2,\,\dots,\,Fv_r\ \ -\ \ \text{l.d.}` 3. :math:`\quad Fv_1,\,Fv_2,\,\dots,\,Fv_r\ \ -\ \ \text{l.i.} \qquad\Rightarrow\qquad v_1,\,v_2,\,\dots,\,v_r\ \ -\ \ \text{l.i.}` 4. :math:`\quad Fv_1,\,Fv_2,\,\dots,\,Fv_r\ \ -\ \ \text{l.d.} \qquad\Rightarrow\qquad v_1,\,v_2,\,\dots,\,v_r\ \ -\ \ \text{l.d.}`