Problems with Solutions ----------------------- **Problem 1.** :math:`\,` Let :math:`\ \boldsymbol{A}\,=\,[\,a_{ij}\,]_{\,2\times 2}\ ` be an arbitrary square matrix of size two over a field :math:`\ K.\ ` For :math:`\ n=2\ ` and :math:`\ 3\ ` show directly, that the matrix :math:`\ \boldsymbol{A}\otimes\boldsymbol{I}_n\ ` may be converted into :math:`\,\boldsymbol{I}_n\otimes\boldsymbol{A}\ ` by means of some transpositions of rows :math:`\ R_i\ ` associated with the same transpositions of columns :math:`\ C_j\quad (i,j=1,\ldots,n).\ ` Determine the permutation matrices :math:`\ \boldsymbol{P}\ ` and :math:`\ \boldsymbol{Q}\ ` in the relation .. math:: \boldsymbol{I}_n\otimes\boldsymbol{A}\ \, = \ \, \boldsymbol{P}\ (\boldsymbol{A}\otimes\boldsymbol{I}_n)\ \boldsymbol{Q}\,. Verify that :math:`\,\boldsymbol{Q} = \boldsymbol{P}^T = \boldsymbol{P}^{-1},\ ` meaning that :math:`\,\boldsymbol{P}\ ` and :math:`\,\boldsymbol{Q}\ ` are, :math:`\,` respectively, :math:`\,` the row and column permutation matrices of the same permutation :math:`\,\sigma.\ ` Write down :math:`\,\sigma\,` in a two-line form. .. if :math:`\,\boldsymbol{P}\,` is the matrix of a permutation :math:`\,\sigma\,` of rows, then :math:`\,\boldsymbol{Q}\,` is the matrix of the same permutation of columns. **Solution** :math:`\,` for :math:`\,` :math:`n=2.\ ` .. math:: \begin{array}{rrr} \boldsymbol{A}\otimes\boldsymbol{I}_2 & =\ \ \left[\begin{array}{cc} a_{11}\ \boldsymbol{I}_2 & a_{12}\ \boldsymbol{I}_2 \\ a_{21}\ \boldsymbol{I}_2 & a_{22}\ \boldsymbol{I}_2 \end{array}\right]\ \ =\ \ \left[\begin{array}{cc|cc} a_{11} & 0 & a_{12} & 0 \\ 0 & a_{11} & 0 & a_{12} \\ \hline a_{21} & 0 & a_{22} & 0 \\ 0 & a_{21} & 0 & a_{22} \end{array}\right]\ \ \rightarrow & \end{array} \\[7pt] \begin{array}{rcl} & \ \ R_2\leftrightarrow R_3: \qquad\qquad\qquad\qquad C_2\leftrightarrow C_3: & \\[3pt] & \rightarrow\ \ \left[\begin{array}{cccc} a_{11} & 0 & a_{12} & 0 \\ a_{21} & 0 & a_{22} & 0 \\ 0 & a_{11} & 0 & a_{12} \\ 0 & a_{21} & 0 & a_{22} \end{array}\right]\ \ \rightarrow\ \ \left[\begin{array}{cc|cc} a_{11} & a_{12} & 0 & 0 \\ a_{21} & a_{22} & 0 & 0 \\ \hline 0 & 0 & a_{11} & a_{12} \\ 0 & 0 & a_{21} & a_{22} \end{array}\right]\ \ =\ & \boldsymbol{I}_2\otimes\boldsymbol{A}\,. \end{array} \\[4pt] The transformation of matrix :math:`\ \boldsymbol{A}\otimes\boldsymbol{I}_2\ ` into :math:`\ \boldsymbol{I}_2\otimes\boldsymbol{A}\ ` proceeds in one double step: .. math:: :label: trans-2 \boldsymbol{I}_2\otimes\boldsymbol{A}\ \, =\ \, \boldsymbol{P}_{23}\ (\boldsymbol{A}\otimes\boldsymbol{I}_2)\ \boldsymbol{Q}_{23}\,, where :math:`\ \boldsymbol{P}_{23}\ ` is the matrix of transposition of rows (the second and the third), :math:`\\` whilst :math:`\ \,\boldsymbol{Q}_{23}\ ` is the matrix of transposition of columns (the second and the third). :math:`\\` These operations are performed by the following Sage code: .. code-block:: python sage: A = matrix([[var("a%d%d" % (k,l)) for l in [1,2]] for k in [1,2]]) sage: I2 = identity_matrix(2) sage: AxI2 = A.tensor_product(I2) sage: P23 = elementary_matrix(4, row1=1, row2=2) sage: Q23 = elementary_matrix(4, col1=1, col2=2) sage: I2xA = P23 * AxI2 * Q23 sage: I2xA.subdivide(2,2) sage: (AxI2, I2xA) ( [a11 0|a12 0] [a11 a12| 0 0] [ 0 a11| 0 a12] [a21 a22| 0 0] [-------+-------] [-------+-------] [a21 0|a22 0] [ 0 0|a11 a12] [ 0 a21| 0 a22], [ 0 0|a21 a22] ) **Solution** :math:`\,` for :math:`\,` :math:`n=3\ ` .. (wersja wierszowo-kolumnowa): .. math:: \begin{array}{llll} \boldsymbol{A}\otimes\boldsymbol{I}_3 & \ =\ \ \ \left[\begin{array}{cc} a_{11}\ \boldsymbol{I}_3 & a_{12}\ \boldsymbol{I}_3 \\ a_{21}\ \boldsymbol{I}_3 & a_{22}\ \boldsymbol{I}_3 \end{array}\right]\ \ =\ \ & \left[\begin{array}{ccc|ccc} a_{11} & 0 & 0 & a_{12} & 0 & 0 \\ 0 & a_{11} & 0 & 0 & a_{12} & 0 \\ 0 & 0 & a_{11} & 0 & 0 & a_{12} \\ \hline a_{21} & 0 & 0 & a_{22} & 0 & 0 \\ 0 & a_{21} & 0 & 0 & a_{22} & 0 \\ 0 & 0 & a_{21} & 0 & 0 & a_{22} \end{array}\right]\ \ \rightarrow & \qquad\quad \end{array} \\[10pt] \begin{array}{ccc} R_2\leftrightarrow R_4: & C_2\leftrightarrow C_4: \\[5pt] \rightarrow\ \ \left[\begin{array}{cccccc} a_{11} & 0 & 0 & a_{12} & 0 & 0 \\ a_{21} & 0 & 0 & a_{22} & 0 & 0 \\ 0 & 0 & a_{11} & 0 & 0 & a_{12} \\ 0 & a_{11} & 0 & 0 & a_{12} & 0 \\ 0 & a_{21} & 0 & 0 & a_{22} & 0 \\ 0 & 0 & a_{21} & 0 & 0 & a_{22} \end{array}\right] & \rightarrow\ \ \left[\begin{array}{cccccc} a_{11} & a_{12} & 0 & 0 & 0 & 0 \\ a_{21} & a_{22} & 0 & 0 & 0 & 0 \\ 0 & 0 & a_{11} & 0 & 0 & a_{12} \\ 0 & 0 & 0 & a_{11} & a_{12} & 0 \\ 0 & 0 & 0 & a_{21} & a_{22} & 0 \\ 0 & 0 & a_{21} & 0 & 0 & a_{22} \end{array}\right]\ \ \rightarrow & \end{array} \\[10pt] \begin{array}{ccc} R_4\leftrightarrow R_6: & C_4\leftrightarrow C_6: \\[5pt] \rightarrow\ \ \left[\begin{array}{cccccc} a_{11} & a_{12} & 0 & 0 & 0 & 0 \\ a_{21} & a_{22} & 0 & 0 & 0 & 0 \\ 0 & 0 & a_{11} & 0 & 0 & a_{12} \\ 0 & 0 & a_{21} & 0 & 0 & a_{22} \\ 0 & 0 & 0 & a_{21} & a_{22} & 0 \\ 0 & 0 & 0 & a_{11} & a_{12} & 0 \end{array}\right] & \rightarrow\ \ \left[\begin{array}{cccccc} a_{11} & a_{12} & 0 & 0 & 0 & 0 \\ a_{21} & a_{22} & 0 & 0 & 0 & 0 \\ 0 & 0 & a_{11} & a_{12} & 0 & 0 \\ 0 & 0 & a_{21} & a_{22} & 0 & 0 \\ 0 & 0 & 0 & 0 & a_{22} & a_{21} \\ 0 & 0 & 0 & 0 & a_{12} & a_{11} \end{array}\right] \ \ \rightarrow & \end{array} \\[10pt] \begin{array}{ccc} R_5\leftrightarrow R_6: & C_5\leftrightarrow C_6: \\[5pt] \rightarrow\ \ \left[\begin{array}{cccccc} a_{11} & a_{12} & 0 & 0 & 0 & 0 \\ a_{21} & a_{22} & 0 & 0 & 0 & 0 \\ 0 & 0 & a_{11} & a_{12} & 0 & 0 \\ 0 & 0 & a_{21} & a_{22} & 0 & 0 \\ 0 & 0 & 0 & 0 & a_{12} & a_{11} \\ 0 & 0 & 0 & 0 & a_{22} & a_{21} \end{array}\right] & \rightarrow\ \ \left[\begin{array}{cc|cc|cc} a_{11} & a_{12} & 0 & 0 & 0 & 0 \\ a_{21} & a_{22} & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & a_{11} & a_{12} & 0 & 0 \\ 0 & 0 & a_{21} & a_{22} & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & a_{11} & a_{12} \\ 0 & 0 & 0 & 0 & a_{21} & a_{22} \end{array}\right] \ \ = & \boldsymbol{I}_3\otimes\boldsymbol{A}\,. \end{array} \\[10pt] The operations performed on rows and columns of the matrix :math:`\ \boldsymbol{A}\otimes\boldsymbol{I}_3\ ` may be written as .. math:: :label: trans-3 \begin{array}{lll} \boldsymbol{I}_3\otimes\boldsymbol{A} & =\ \boldsymbol{P}_{56}\,\{\,\boldsymbol{P}_{46}\,[\,\boldsymbol{P}_{24}\, (\boldsymbol{A}\otimes\boldsymbol{I}_3)\, \boldsymbol{Q}_{24}\,]\,\boldsymbol{Q}_{46}\,\}\,\boldsymbol{Q}_{56} \ = & \\[7pt] & =\ \ (\boldsymbol{P}_{56}\,\boldsymbol{P}_{46}\,\boldsymbol{P}_{24})\ (\boldsymbol{A}\otimes\boldsymbol{I}_3)\ (\boldsymbol{Q}_{24}\,\boldsymbol{Q}_{46}\,\boldsymbol{Q}_{56})\ \ \equiv & \boldsymbol{P}\ (\boldsymbol{A}\otimes\boldsymbol{I}_3)\ \boldsymbol{Q}. \end{array} Thus :math:`\ \boldsymbol{P} = \boldsymbol{P}_{56}\ \boldsymbol{P}_{46}\ \boldsymbol{P}_{24}\,,\ ` :math:`\ \boldsymbol{Q} = \boldsymbol{Q}_{24}\ \boldsymbol{Q}_{46}\ \boldsymbol{Q}_{56}\,,\ ` where :math:`\ \boldsymbol{P}_{ij}\ ` is a matrix of transposition of rows :math:`\ i,j\,,\ \,` and :math:`\ \, \boldsymbol{Q}_{ij}\ ` :math:`\ -\ \ ` a matrix of transposition of columns :math:`\ i,j\,,\ ` :math:`\ (i