Vectorization of Matrices ------------------------- The term :math:`\,` *vectorization of a matrix* :math:`\,` denotes a linear transformation which converts a matrix with :math:`\,m\,` rows :math:`\,` and :math:`\,n\,` columns into a column vector of size :math:`\,mn.\ ` Consider a matrix :math:`\,\boldsymbol{A}=[\,a_{ij}\,]_{m\times n}\in M_{m\times n}(K),\ ` where :math:`\,M_{m\times n}(K)\ ` is the vector space of :math:`\,m \times n\ ` matrices over a field :math:`\,K.\ ` Let :math:`\,E_{\,m\times n}\,=\,\{\,\boldsymbol{E}_{ij}:\ \ i=1,\ldots,m;\ j=1,\ldots,n\,\}\ ` be the standard basis of :math:`\,M_{m\times n}(K),\ ` composed of matrices :math:`\,\boldsymbol{E}_{ij}\ ` with exactly one non-zero entry, :math:`\,` equal to unity, :math:`\,` in the :math:`\,i`-th row and :math:`\,j`-th column: .. math:: \left(\boldsymbol{E}_{ij}\right)_{\,|\,kl}\ =\ \ \delta_{ik}\ \delta_{jl}\,, \qquad \begin{array}{l} i,k=1,2,\ldots,m, \\ j,l=1,2,\ldots,n. \end{array} The matrix :math:`\,\boldsymbol{A}\ ` may be vectorized in two ways: * by juxtaposing the consecutive *rows* of the matrix next to each other :math:`\\` and taking the transpose of the obtained long "multi-row": .. math:: \boldsymbol{\Lambda}^{mn}(\boldsymbol{A})\ \,:\,=\ \, [\,a_{11}\ \,a_{12}\ \,\ldots\ \,a_{1n}\ \ \, a_{21}\ \,a_{22}\ \,\ldots\ \,a_{2n}\ \ \,\ldots\ \ \, a_{m1}\ \,a_{m2}\ \,\ldots\ \,a_{mn}\,]^{\,T} . The vector :math:`\,\boldsymbol{\Lambda}^{mn}(\boldsymbol{A})\ ` is the column of coordinates of matrix :math:`\,\boldsymbol{A}\ ` in the ordered basis .. math:: \mathcal{E}^{\,row}_{m\times n}\ =\ \left(\ \boldsymbol{E}_{11},\ \boldsymbol{E}_{12},\ \ldots,\ \boldsymbol{E}_{1n},\ \ \boldsymbol{E}_{21},\ \boldsymbol{E}_{22},\ \ldots,\ \boldsymbol{E}_{2n},\ \ \ldots,\ \ \boldsymbol{E}_{m1},\ \boldsymbol{E}_{m2},\ \ldots,\ \boldsymbol{E}_{mn}\,\right)\,. * by stacking the *columns* of the matrix on top of one another: .. math:: \boldsymbol{\mathrm{V}}^{mn}(\boldsymbol{A})\ \,:\,=\ \, [\,a_{11}\ \,a_{21}\ \,\ldots\ \,a_{m1}\ \ \, a_{12}\ \,a_{22}\ \,\ldots\ \,a_{m2}\ \ \,\ldots\ \ \, a_{1n}\ \,a_{2n}\ \,\ldots\ \,a_{mn}\,]^{\,T} . The vector :math:`\,\boldsymbol{\mathrm{V}}^{mn}(\boldsymbol{A})\ ` is the column of coordinates of matrix :math:`\,\boldsymbol{A}\ ` in the ordered basis .. math:: \mathcal{E}^{\,col}_{m\times n}\ =\ \left(\ \boldsymbol{E}_{11},\ \boldsymbol{E}_{21},\ \ldots,\ \boldsymbol{E}_{m1},\ \ \boldsymbol{E}_{12},\ \boldsymbol{E}_{22},\ \ldots,\ \boldsymbol{E}_{m2},\ \ \ldots,\ \ \boldsymbol{E}_{1n},\ \boldsymbol{E}_{2n},\ \ldots,\ \boldsymbol{E}_{mn}\,\right)\,. In literature [1]_ :math:`\ ` the vector :math:`\,\boldsymbol{\mathrm{V}}^{mn}(\boldsymbol{A})\ ` is also denoted by :math:`\,\text{vec}(\boldsymbol{A}).` .. **Example.** :math:`\\` The space :math:`\ M_{2\times 3}(Q)\ ` has the standard basis :math:`\ \mathcal{E}_{2\times 3}\ =\ \left(\,\boldsymbol{E}_{11},\ \boldsymbol{E}_{12},\ \boldsymbol{E}_{13},\ \boldsymbol{E}_{21},\ \boldsymbol{E}_{22},\ \boldsymbol{E}_{23}\,\right)`: **Example.** :math:`\,` The standard basis of the vector space :math:`\ M_{2\times 3}(R)\ ` is composed of the matrices .. math:: \begin{array}{lll} \boldsymbol{E}_{11}\ =\ \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right], & \boldsymbol{E}_{12}\ =\ \left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right], & \boldsymbol{E}_{13}\ =\ \left[\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right], \\[12pt] \boldsymbol{E}_{21}\ =\ \left[\begin{array}{ccc} 0 & 0 & 0 \\ 1 & 0 & 0 \end{array}\right], & \boldsymbol{E}_{22}\ =\ \left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 1 & 0 \end{array}\right], & \boldsymbol{E}_{23}\ =\ \left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right], \end{array} hence the ordered bases are: .. math:: \mathcal{E}^{\,row}_{2\times 3}\ =\ \left(\ \boldsymbol{E}_{11},\ \boldsymbol{E}_{12},\ \boldsymbol{E}_{13},\ \ \boldsymbol{E}_{21},\ \boldsymbol{E}_{22},\ \boldsymbol{E}_{23}\ \right)\,, \mathcal{E}^{\,col}_{2\times 3}\ =\ \left(\ \boldsymbol{E}_{11},\ \boldsymbol{E}_{21},\ \boldsymbol{E}_{12},\ \ \boldsymbol{E}_{22},\ \boldsymbol{E}_{13},\ \boldsymbol{E}_{23}\ \right)\,. For the matrix :math:`\ \boldsymbol{A}\ =\ \left[\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \end{array}\right]\ \ ` we get :math:`\ \ \boldsymbol{\Lambda}^{23}(\boldsymbol{A})\ =\ \left[\begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{array}\right],\ \ \boldsymbol{\mathrm{V}}^{23}(\boldsymbol{A})\ =\ \left[\begin{array}{c} 1 \\ 4 \\ 2 \\ 5 \\ 3 \\ 6 \end{array}\right]\,.` For :math:`\ \boldsymbol{A}\in M_{m\times n}(K)\ ` obviously :math:`\ \boldsymbol{\mathrm{V}}^{mn}(\boldsymbol{A})\ =\ \boldsymbol{\Lambda}^{nm}(\boldsymbol{A}^T)\,,\quad` :math:`\ \boldsymbol{\Lambda}^{mn}(\boldsymbol{A})\ =\ \boldsymbol{\mathrm{V}}^{nm}(\boldsymbol{A}^T)\,.` Using the Kronecker product, matrix multiplication can be expressed as a linear transformation of vectorized matrices. With this end in view, assume that :math:`\ \boldsymbol{A}=[a_{ij}]_{m\times p},\ ` :math:`\ \boldsymbol{B}=[b_{ij}]_{p\times n}\ ` and :math:`\ \boldsymbol{C}\equiv\boldsymbol{A}\boldsymbol{B}= [c_{ij}]_{m\times n}\ ` are matrices over a field :math:`\ K.\ ` Then .. math:: :label: product c_{ij}\ =\ \,\sum_{k=1}^p\ a_{ik}\ b_{kj}\,,\qquad i=1,2,\ldots,m;\ j=1,2,\ldots,n. Equation :eq:`product` may be rewritten as .. math: \begin{array}{rl} c_{ij} & =\ \displaystyle\sum_{v=1}^p\ a_{iv}\ b_{vj}\ =\ \displaystyle\sum_{v=1}^p\sum_{w=1}^n\ a_{iv}\ \delta_{jw}\ b_{vw}\ = \\ & =\ \displaystyle\sum_{v=1}^p\sum_{w=1}^n\ \left(\,\boldsymbol{A}\otimes\boldsymbol{I}_n\right)_{ij,vw}\ b_{vw} \end{array} .. math:: c_{ij}\ = \ \displaystyle\sum_{v=1}^p\ a_{iv}\ b_{vj} \ = \ \displaystyle\sum_{v=1}^p\sum_{w=1}^n\ a_{iv}\ \delta_{jw}\ b_{vw} \ = \ \displaystyle\sum_{v=1}^p\sum_{w=1}^n\ \left(\boldsymbol{A}\otimes\boldsymbol{I}_n\right)_{ij,\,vw}\ b_{vw} i=1,2,\ldots,m;\ j=1,2,\ldots,n. which is equivalent to the matrix equation .. math:: \blacktriangleright\quad \boldsymbol{\Lambda}^{mn}(\boldsymbol{A}\boldsymbol{B})\ \,=\ \, \left(\,\boldsymbol{A}\otimes\boldsymbol{I}_n\,\right)\ \cdot\ \boldsymbol{\Lambda}^{pn}(\boldsymbol{B}) On the other hand, Eq. :eq:`product` yields also .. math:: c_{ij}\ = \ \displaystyle\sum_{w=1}^p\ b_{wj}\ a_{iw} \ = \ \displaystyle\sum_{v=1}^m\sum_{w=1}^p\ \delta_{iv}\ b_{jw}^{\,T}\ a_{vw} \ = \ \displaystyle\sum_{v=1}^m\sum_{w=1}^p\ \left(\boldsymbol{I}_m\otimes\boldsymbol{B}^T\right)_{ij,\,vw}\ a_{vw} wherefrom we obtain an alternative relation for the matrix product :math:`\ \boldsymbol{A}\boldsymbol{B}\,:` .. math:: \blacktriangleright\quad \boldsymbol{\Lambda}^{mn}(\boldsymbol{A}\boldsymbol{B})\ \,=\ \, \left(\,\boldsymbol{I}_m\otimes\boldsymbol{B^{\,T}}\,\right)\ \cdot\ \boldsymbol{\Lambda}^{mp}(\boldsymbol{A}) .. [1] see, e.g. https://en.wikipedia.org/wiki/Vectorization_(mathematics)