Systems of Linear Equations --------------------------- **Exercise 0.** :math:`\\` Write down the following problems in a form of a system of linear equations and find its solutions (by any means). #. | Andrew is two times older than Peter, and the sum of their age equals 33. | How old are Andrew and Peter? #. | The points :math:`\ P_1=(2,5)\ ` and :math:`\ P_2=(3,7)\ ` lie on a line given by the equation :math:`\ y=ax+b.\ ` | Find the parameters :math:`\ a\ ` and :math:`\ b.` #. | The parabola passes through the points :math:`\ P_1=(1,4),\ P_2=(2,8)\ ` and :math:`\ P_3=(3,14).\ ` | Find the coefficients :math:`\ a,\,b,\,c\ ` which determine the equation :math:`\ y=ax^2+bx+c\ ` of this parabola. **Exercise 1.** :math:`\\` Perform elementary operations on the equations (cf. :ref:`Gaussian Elimination`) or rows of the corresponding matrices (cf. :ref:`Practical Elimination in Sage`), without applying functions ``solve()``, :math:`\,` ``X.solve_right()``, :math:`\,` ``X\y``, :math:`\,` ``X.rref()``, :math:`\,` in order to solve the following systems of equations over the field :math:`\ Q:` #. .. math:: :nowrap: \begin{alignat*}{3} x_1 & \ -\ & x_2 & \ =\ & 0 \\ -\,x_1 & \ +\ & 2\,x_2 & \ =\ & \ \textstyle\frac{1}{36} \end{alignat*} .. (1/36, 1/36), rank A: 2 #. .. math:: :nowrap: \begin{alignat*}{3} -\,2\,x_1 & \ -\ & 3\,x_2 & \ =\ & 0 \\ 3\,x_1 & \ +\ & 4\,x_2 & \ =\ & \ \textstyle\frac{16}{7} \end{alignat*} .. (48/7, -32/7), rank A: 2 #. .. math:: :nowrap: \begin{alignat*}{4} 16\,x_1 & \ +\ & 41\,x_2 & \ -\ & 101\,x_3 & \ =\ & -\,\textstyle\frac{1}{10} \\ x_1 & \ +\ & 3\,x_2 & \ -\ & 7\,x_3 & \ =\ & \ \textstyle\frac{1}{2} \\ -\,5\,x_1 & \ -\ & 13\,x_2 & \ +\ & 32\,x_3 & \ =\ & 1 \end{alignat*} .. (16, 71/5, 83/10), rank A: 3 #. .. math:: :nowrap: \begin{alignat*}{4} -\,x_1 & \ -\ & 3\,x_2 & \ +\ & 9\,x_3 & \ =\ & 1 \\ x_1 & \ \ & & \ +\ & x_3 & \ =\ & -\,2 \\ -\,2\,x_1 & \ -\ & 2\,x_2 & \ +\ & 5\,x_3 & \ =\ & 2 \end{alignat*} .. (2, -13, -4), rank A: 3 #. .. math:: :nowrap: \begin{alignat*}{4} -\,11\,x_1 & \ +\ & 44\,x_2 & \ -\ & 135\,x_3 & \ =\ & 0 \\ 2\,x_1 & \ -\ & 7\,x_2 & \ +\ & 20\,x_3 & \ =\ & \textstyle\frac{1}{3} \\ 4\,x_1 & \ -\ & 16\,x_2 & \ +\ & 49\,x_3 & \ =\ & -\ \textstyle\frac{1}{7} \end{alignat*} .. (223/21, 157/21, 11/7), rank A: 3 #. .. math:: :nowrap: \begin{alignat*}{5} x_1 &\ +\ & 3\,x_2 &\ -\ & x_3 &\ +\ & 23 \,x_4 &\ =\ & -\,1 \\ 4\,x_1 &\ +\ & 13\,x_2 &\ -\ & 3\,x_3 &\ +\ & 93 \,x_4 &\ =\ & -\,1 \\ -\,5\,x_1 &\ -\ & 17\,x_2 &\ +\ & 4\,x_3 &\ -\ & 121 \,x_4 &\ =\ & -\ \textstyle\frac{1}{2} \\ &\ \ & x_2 &\ +\ & 3\,x_3 &\ -\ & 6 \,x_4 &\ =\ & \textstyle\frac{1}{2} \end{alignat*} .. (6, 20, -27/2, -7/2), rank A: 4 **Exercise 2.** :math:`\,` Now use all necessary functions of Sage (c.f. :ref:`Example with Discussion`) to solve real linear problems of the form :math:`\ \boldsymbol{A}\,\boldsymbol{x}=\boldsymbol{b}\ \,` for the following data: 1. .. math:: \boldsymbol{A}\ =\ \left[\begin{array}{rrrr} 1 & -5 & 9 & 11 \\ 1 & -4 & 8 & 9 \\ -3 & 15 & -26 & -33 \\ -2 & 7 & -10 & -16 \end{array}\right]\,,\qquad \boldsymbol{b}\ =\ \left[\begin{array}{r} -1 \\ 0 \\ 4 \\ 4 \end{array}\right]\,; 2. .. math:: \boldsymbol{A}\ =\ \left[\begin{array}{rrrr} 1 & 4 & 5 & -1 \\ -3 & -12 & -14 & 3 \\ 3 & 12 & 19 & -3 \\ -2 & -8 & -12 & 2 \end{array}\right]\,,\qquad \boldsymbol{b}\ =\ \left[\begin{array}{r} 13 \\ -38 \\ 43 \\ -28 \end{array}\right]\,; .. .. math:: \boldsymbol{A}\ =\ \left[\begin{array}{rrrr} 1 & 4 & 5 & -1 \\ -3 & -12 & -14 & 3 \\ 3 & 12 & 19 & -3 \\ -2 & -8 & -12 & 2 \end{array}\right]\,,\qquad \boldsymbol{b}\ =\ \left[\begin{array}{r} 0 \\ 0 \\ 0 \\ 0 \end{array}\right]\,; 3. .. math:: \boldsymbol{A}\ =\ \left[\begin{array}{rrr} 1 & -5 & -11 \\ 2 & -9 & -20 \\ 4 & -16 & -36 \end{array}\right]\,,\qquad \boldsymbol{b}\ =\ \left[\begin{array}{r} -1 \\ -5 \\ 1 \end{array}\right]\,. A basis of the solution space of the homogeneous linear problem :math:`\ \boldsymbol{A}\,\boldsymbol{x}=\boldsymbol{0}\ ` is called a :math:`\,` *fundamental set of solutions* :math:`\,` for this problem. **Exercise 3.** :math:`\,` Find a fundamental set of solutions of the homogeneous linear problem over :math:`\ Q\ ` with coefficient matrix .. math:: \boldsymbol{A}\ =\ \left[\begin{array}{rrrr} 1 & 4 & 5 & -1 \\ -3 & -12 & -14 & 3 \\ 3 & 12 & 19 & -3 \\ -2 & -8 & -12 & 2 \end{array}\right]\,. **Exercise 4.** :math:`\,` Find a homogeneous system of equations consisting of :math:`\,` a.) two :math:`\,` b.) three :math:`\,` equations so that the vectors .. math:: \left[\begin{array}{r} 1 \\ 4 \\ -2 \\ 2 \\ -1 \end{array}\right]\,,\quad \left[\begin{array}{r} 3 \\ 13 \\ -1 \\ 2 \\ 1 \end{array}\right]\,,\quad \left[\begin{array}{r} 2 \\ 7 \\ -8 \\ 4 \\ -5 \end{array}\right] comprise its fundamental set of solutions. .. (4.4.30) **Exercise 5.** :math:`\,` Does there exist a homogeneous system of linear equations whose fundamental set of solutions is given both by the vectors :math:`\ (\boldsymbol{x}_1,\boldsymbol{x}_2,\boldsymbol{x}_3)\ ` and :math:`\ (\boldsymbol{y}_1,\boldsymbol{y}_2,\boldsymbol{y}_3),\ ` where .. math:: \begin{array}{lll} \boldsymbol{x}_1= \left[\begin{array}{r} 2 \\ 3 \\ 1 \\ 2 \end{array}\right], & \boldsymbol{x}_2= \left[\begin{array}{r} 1 \\ 1 \\ -2 \\ -2 \end{array}\right], & \boldsymbol{x}_3= \left[\begin{array}{r} 3 \\ 4 \\ 2 \\ 1 \end{array}\right], \\ \\ \boldsymbol{y}_1= \left[\begin{array}{r} 1 \\ 0 \\ 2 \\ -5 \end{array}\right], & \boldsymbol{y}_2= \left[\begin{array}{r} 0 \\ 1 \\ 8 \\ 7 \end{array}\right], & \boldsymbol{y}_3= \left[\begin{array}{r} 4 \\ 5 \\ -2 \\ 0 \end{array}\right]. \end{array} .. (4.4.31) **Exercise 6.** :math:`\\` Does there exist :math:`\ \lambda\in Q\ ` for which the followng system of linear equations .. math:: :nowrap: \begin{alignat*}{4} x_1 & \ +\ & 2\,x_2 & \ +\ & 3\,\lambda\,x_3 & \ =\ & -1 \\ x_1 & \ +\ & x_2 & \ -\ & x_3 & \ =\ & 1 \\ \,2\,x_1 & \ +\ & x_2 & \ +\ & 5\,x_3 & \ =\ & 3 \end{alignat*} has infinitely many solutions over :math:`\ Q\ `? **Hint.** The (negative) answer may be given by computation of only one determinant of rank 3. **Exercise 7.** For which :math:`\ \lambda\in R\ ` the following system of linear equations over the field :math:`\ R\ ` has a solution? :math:`\,` Find this solution. .. math:: :nowrap: \begin{alignat*}{5} 2\,x_1 &\ -\ & x_2 &\ +\ & x_3 &\ +\ & x_4 &\ =\ & 1 \\ x_1 &\ +\ & 2\,x_2 &\ -\ & x_3 &\ +\ & 4\,x_4 &\ =\ & 2 \\ x_1 &\ +\ & 7\,x_2 &\ -\ & 4\,x_3 &\ +\ & 11\,x_4 &\ =\ & \lambda \end{alignat*} **Exercise 8.** Describe a solution space of the following systems of equations depending on :math:`\ \lambda`: #. .. math:: :nowrap: \begin{alignat*}{4} 3\,x_1 & \ +\ & 2\,x_2 & \ +\ & x_3 & \ =\ & -1 \\ 7\,x_1 & \ +\ & 6\,x_2 & \ +\ & 5\,x_3 & \ =\ & \lambda \\ 5\,x_1 & \ +\ & 4\,x_2 & \ +\ & 3\,x_3 & \ =\ & 2 \end{alignat*} #. .. math:: :nowrap: \begin{alignat*}{4} \lambda\,x_1 & \ +\ & x_2 & \ +\ & x_3 & \ =\ & 0 \\ 5\,x_1 & \ +\ & x_2 & \ -\ & 2\,x_3 & \ =\ & 2 \\ -2\,x_1 & \ -\ & 2\,x_2 & \ +\ & x_3 & \ =\ & -3 \end{alignat*} #. .. math:: :nowrap: \begin{alignat*}{4} x_1 & \ +\ & x_2 & \ +\ & \lambda\,x_3 & \ =\ & 1 \\ x_1 & \ +\ & \lambda\,x_2 & \ +\ & x_3 & \ =\ & 1 \\ \lambda\,x_1 & \ +\ & x_2 & \ +\ & x_3 & \ =\ & 1 \end{alignat*} **Exercise 9.** :math:`\,` Determine all the values of :math:`\ \lambda\in R\ ` for which a vector :math:`\ \boldsymbol{b}\ ` may be expressed as a linear combination of vectors :math:`\ \boldsymbol{a}_1,\,\boldsymbol{a}_2,\,\boldsymbol{a}_3:` .. math:: \begin{array}{lllll} 1.) & \qquad \boldsymbol{a}_1=\left[\begin{array}{r} 2 \\ 3 \\ 5 \end{array}\right], & \boldsymbol{a}_2=\left[\begin{array}{r} 3 \\ 7 \\ 8 \end{array}\right], & \boldsymbol{a}_3=\left[\begin{array}{r} 1 \\ -6 \\ 1 \end{array}\right], & \quad \boldsymbol{b} = \left[\begin{array}{r} 7 \\ -2 \\ \lambda \end{array}\right]; \\ \\ 2.) & \qquad \boldsymbol{a}_1=\left[\begin{array}{r} 4 \\ 4 \\ 3 \end{array}\right], & \boldsymbol{a}_2=\left[\begin{array}{r} 7 \\ 2 \\ 1 \end{array}\right], & \boldsymbol{a}_3=\left[\begin{array}{r} 4 \\ 1 \\ 6 \end{array}\right], & \quad \boldsymbol{b} = \left[\begin{array}{r} 5 \\ 9 \\ \lambda \end{array}\right]; \\ \\ 3.) & \qquad \boldsymbol{a}_1=\left[\begin{array}{r} 3 \\ 2 \\ 6 \end{array}\right], & \boldsymbol{a}_2=\left[\begin{array}{r} 7 \\ 3 \\ 9 \end{array}\right], & \boldsymbol{a}_3=\left[\begin{array}{r} 5 \\ 1 \\ 3 \end{array}\right], & \quad \boldsymbol{b} = \left[\begin{array}{r} \lambda \\ 2 \\ 5 \end{array}\right]; \\ \\ 4.) & \qquad \boldsymbol{a}_1=\left[\begin{array}{r} 3 \\ 2 \\ 5 \end{array}\right], & \boldsymbol{a}_2=\left[\begin{array}{r} 2 \\ 4 \\ 7 \end{array}\right], & \boldsymbol{a}_3=\left[\begin{array}{r} 5 \\ 6 \\ \lambda \end{array}\right], & \quad \boldsymbol{b} = \left[\begin{array}{r} 1 \\ 3 \\ 5 \end{array}\right]. \end{array} **Hint.** :math:`\,` Study existence of solutions for a linear problem given in a column form .. math:: x_1\,\boldsymbol{a}_1+x_2\,\boldsymbol{a}_2+x_3\,\boldsymbol{a}_3=\boldsymbol{b}. **Exercise 10.** Consider a vector space of real polynomials of one variable :math:`\ x\ ` of degree (at most) :math:`\ n.\ ` What is the dimension of the subspace consisting of polynomials satisfying the conditions :math:`\ w(x_1)=w(x_2)=\ldots=w(x_k)=0,\ ` where :math:`\ x_1,x_2,\ldots,x_k\ ` are pairwise distinct numbers :math:`\ (k\le n).` .. (4.4.28) Odpowiedź: n+1-k. **Hnt.** Use a formula for the Vandermonde determinant (see equation :eq:`Vandermonde`). **Exercise 11.** Find a basis for a vector space of real polynomials of one variable of degree (at most) 5 satisfying the conditions :math:`\ w(0)=w(1)=w(2)=w(3)=0.` .. (4.4.29)`