Problems
Problem 1. \(\ \) Let
\[\begin{split}\boldsymbol{C}\ \ =\ \
\left[\begin{array}{cc}
\boldsymbol{A} & \boldsymbol{0}\, \\[4pt]
\cdots & \boldsymbol{B}\,
\end{array}\right]
\ \ =\ \
\left[\begin{array}{ccc|ccc}
a_{11} & \ldots & a_{1p} & 0 & \ldots & 0 \\[4pt]
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\[4pt]
a_{p1} & \ldots & a_{pp} & 0 & \ldots & 0 \\[4pt] \hline
\ldots & \ldots & \ldots & b_{11} & \ldots & b_{1q} \\[4pt]
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\[4pt]
\ldots & \ldots & \ldots & b_{q1} & \ldots & b_{qq}
\end{array}\right]\end{split}\]
where the lower left rectangle is filled with any elements. Prove that
\[\det{\boldsymbol{C}}\ \,=\ \,
\det{\boldsymbol{A}}\,\cdot\,\det{\boldsymbol{B}}\,.\]
Proof. \(\ \) Induction with respect to \(\ q.\)
I. \(\ \) We verify the statement for \(\ q = 1.\ \)
Then \(\ \boldsymbol{B}\ =\ [b_{11}]_{1 \times 1}:\)
\[\begin{split}\boldsymbol{C}\ \ =\ \
\left[\begin{array}{ccc|c}
a_{11} & \ldots & a_{1p} & 0 \\[4pt]
\ldots & \ldots & \ldots & \ldots \\[4pt]
a_{p1} & \ldots & a_{pp} & 0 \\[4pt] \hline
\ldots & \ldots & \ldots & b_{11}
\end{array}\right]\end{split}\]
By the Laplace expansion along the last column we get
\[\det{\boldsymbol{C}}\ \,=\ \,
b_{11}\,\cdot\:(-1)^{2\,(p+1)}\ \det{\boldsymbol{A}}\ \,=\ \,
\det{\boldsymbol{A}}\,\cdot\:b_{11}\ \,=\ \,
\det{\boldsymbol{A}}\,\cdot\,\det{\boldsymbol{B}}\,.\]
II. \(\ \)
We assume that the statement is true for some \(\ q-1,\ \\\)
and have to prove that the statemant is then true for \(\ q.\)
We shall use the following denotements (\(i=1,2,\ldots,q\)):
\(M_{iq}\ -\ \) the minor of matrix \(\ \boldsymbol{B}\ \)
obtained by removing the \(\ i\)-th row and the \(\ q\)-th column;
\(B_{iq}\ -\ \) the cofactor of the element \(\ b_{iq}\ \)
in the matrix \(\ \boldsymbol{B};\)
\(C_{iq}\ -\ \) the cofactor of the element \(\ b_{iq}\ \)
in the matrix \(\ \boldsymbol{C}.\)
In virtue of the induction hypothesis:
\[\begin{split}\begin{array}{rl}
C_{iq} & =\ \ (-1)^{(p+i)+(p+q)}\ \cdot\
\det{\boldsymbol{A}}\ \cdot\ M_{iq}\ \ = \\
& =\ \ (-1)^{2p+(i+q)}\ \cdot\ \det{\boldsymbol{A}}\ \cdot\ M_{iq}\ \ = \\
& =\ \ \det{\boldsymbol{A}}\ \cdot\ (-1)^{i+q}\ \cdot\ M_{iq}\ \ =\ \
\det{\boldsymbol{A}}\ \cdot\ B_{iq}\,.
\end{array}\end{split}\]
The Laplace expansion along the last column of matrix
\(\ \boldsymbol{C}\ \) yields
\[\det{\boldsymbol{C}}\ \,=\ \,
\displaystyle\sum_{i=1}^q\ b_{iq}\,C_{iq}\ =\
\det{\boldsymbol{A}}\ \cdot\ \displaystyle\sum_{i=1}^q\,b_{iq}\ B_{iq}\ =\
\det{\boldsymbol{A}}\ \cdot\ \det{\boldsymbol{B}}\,.
\quad\bullet\]
Corollary. \(\\\)
Suppose that
\(\ \boldsymbol{A}_1,\,\boldsymbol{A}_2,\,\ldots,\,\boldsymbol{A}_k\ \)
are square matrices, possibly of different sizes.
Once again by induction one may easily prove the formula for the
determinant of the block-diagonal matrix:
\[\begin{split}\left|\begin{array}{cccc}
\boldsymbol{A}_1 & \boldsymbol{0} & \ldots & \boldsymbol{0} \\[4pt]
\boldsymbol{0} & \boldsymbol{A}_2 & \ldots & \boldsymbol{0} \\[4pt]
\cdots & \cdots & \cdots & \cdots \\[4pt]
\boldsymbol{0} & \boldsymbol{0} & \ldots & \boldsymbol{A}_k
\end{array}\right|\ \ =\ \
\det{\boldsymbol{A}_1}\ \cdot\ \det{\boldsymbol{A}_2}
\ \cdot\ \ldots\ \cdot\ \det{\boldsymbol{A}_k}\,.\end{split}\]
In particular, if \(\ \boldsymbol{I}_n\in M_n(K)\ \)
is the identity matrix, \(\ \boldsymbol{A}\in M_m(K),\ \) then
\[\begin{split}\det{(\boldsymbol{I}_n\otimes\boldsymbol{A})}\ \ =\ \
\underbrace{
\left|\begin{array}{cccc}
\boldsymbol{A} & \boldsymbol{0} & \cdots & \boldsymbol{0} \\[3pt]
\boldsymbol{0} & \boldsymbol{A} & \cdots & \boldsymbol{0} \\[3pt]
\cdots & \cdots & \cdots & \cdots \\[3pt]
\boldsymbol{0} & \boldsymbol{0} & \cdots & \boldsymbol{A}
\end{array}\right|}_{n\ \text{blocks}}\ \ =\ \
\left(\det{\boldsymbol{A}}\right)^n.\end{split}\]
Problem 2. \(\ \)
Prove that
if \(\ \boldsymbol{P}_\sigma\in M_n(K)\ \) is the matrix
of a permutation \(\,\sigma\in S_n\,,\ \)
then \(\ \det\boldsymbol{P}_\sigma\ =\ \text{sgn}\,\sigma\,.\)
Proof.
Any permutation \(\,\sigma\in S_n\ \) may be represented
as a product of transpositions:
\[\sigma\ =\ \tau_k\,\dots\,\tau_2\ \tau_1\,.\]
Accordingly, the matrix \(\ \boldsymbol{P}_\sigma\,\) is a product
of matrices representing transpositions:
\[\boldsymbol{P}_\sigma\ =\
\boldsymbol{P}_{\tau_k\,\dots\,\tau_2\ \tau_1}\ =\
\boldsymbol{P}_{\tau_1}\ \boldsymbol{P}_{\tau_2}\ \ldots\
\boldsymbol{P}_{\tau_k}\,.\]
Transpositions are represented by elementary matrices of the first kind
\(\\\)
(obtained from the identity matrix by a transposition of two rows).
So
\[\boldsymbol{P}_\sigma\ =\
\boldsymbol{E}_1^{(1)}\,\boldsymbol{E}_1^{(2)}\,\ldots\
\boldsymbol{E}_1^{(k)}\,.\]
Every elementary matrix of the first kind has determinant \(-1\):
\[\det{\boldsymbol{E}_1^{(i)}}\ =\ -1\,,\qquad i=1,2,\ldots\,k.\]
Determinant of a product of matrices being equal to the product of determinants:
\[\det{\left(\boldsymbol{E}_1^{(1)}\,\boldsymbol{E}_1^{(2)}\,\ldots\,
\boldsymbol{E}_1^{(k)}\right)}\ \ =\ \
\det{\boldsymbol{E}_1^{(1)}}\cdot\ \det{\boldsymbol{E}_1^{(2)}}\,
\cdot\ \ldots\ \cdot\
\det{\boldsymbol{E}_1^{(k)}}\,,\]
we obtain
(\(\,k\,\) is the number of factors in any representation
of \(\,\sigma\,\) as a product of transpositions):
\[\det{\boldsymbol{P}_{\sigma}}\ =\ (-1)^k\ =\ \text{sgn}\,\sigma\,.
\quad\bullet\]