Square Matrix as a Linear Operator¶
For a given matrix \(\,\boldsymbol{A}\,\in M_n(C)\,\) we define a mapping
More precisely, \(\,\) if \(\ \ \boldsymbol{A}= [\,\boldsymbol{A}_1\,|\,\boldsymbol{A}_2\,|\,\ldots\,|\,\boldsymbol{A}_n\,]= [a_{ij}]_{n\times n}\,,\ \ \boldsymbol{x}\ =\ [x_{i}]_n\,,\ \) then
We take a simplified notation for an image of a vector \(\,\boldsymbol{x}\,\) under the mapping \(\,F\):
Theorem 0. \(\\ \ \) The mapping (1) is a linear operator on the space \(\,C^n\,\): \(\ \ F\in\text{End}\,(C^n)\).
Proof. \(\\\) Linearity of the mapping \(F\) is a consequence of matrix multiplication:
Theorem 1. \(\\ \ \) \(\boldsymbol{A}\,\) is a matrix of the operator \(\,F\,\) in the canonical basis \(\,\mathcal{E}\,\) of the space \(\,C^n :\) \(\ \boldsymbol{A}\,=\,M_{\mathcal{E}}(F)\).
Proof. \(\\\) Let \(\,\mathcal{E}\,=\,(\boldsymbol{e}_1,\, \boldsymbol{e}_2,\,\dots,\,\boldsymbol{e}_n)\,\) be the canonical basis of the space \(\,C^n.\ \) Then
Theorem 2. \(\\ \ \) Eigenvalues of the operator \(\,F\,\) are roots of the characteristic equation of the matrix \(\boldsymbol{A}.\)
Proof. \(\\\) A vector \(\,\boldsymbol{x} \in C^n\setminus\{\boldsymbol{0}\}\,\) is an eigenvector of the operator \(\,F\,\) associated with the eigenvalue \(\,\lambda \in C\) \(\,\) if
The homogeneous linear problem (2) has a non-zero solution \(\,\boldsymbol{x}\,\) if and only if \(\\\) \(\ \det{(\boldsymbol{A}-\lambda\,\boldsymbol{I}_n)}\ =\ 0\,,\ \) that is, if \(\,\lambda\,\) is a characteristic root of the matrix \(\,\boldsymbol{A}\).
Numbers \(\,\lambda\,\) and the associated non-zero vectors \(\,\boldsymbol{x}\,\) determined by the equation (2) will be called eigenvalues and eigenvectors of the matrix \(\,\boldsymbol{A}\).
Hence, a vector \(\,\boldsymbol{x} \in C^n\,\) is an eigenvector of the matrix \(\,\boldsymbol{A} \in M_n(C)\ \) associated with an eigenvalue \(\,\lambda \in C\ \) if \(\,\boldsymbol{x}\neq\boldsymbol{0}\ \ \) and \(\ \ \boldsymbol{A}\,\boldsymbol{x} = \lambda\,\boldsymbol{x}\).
Theorem 3.
\(\ \) If \(\boldsymbol{A}\,\) is a Hermitian matrix, \(\ \) then \(\,F\,\) is a Hermitian operator:
\[\boldsymbol{A}^+=\ \boldsymbol{A}\quad\Rightarrow\quad F^+=\ F\,.\]\(\ \) If \(\boldsymbol{A}\,\) is a unitary matrix, \(\ \) then \(\,F\,\) is a unitary operator:
\[\boldsymbol{A}^+\boldsymbol{A}\,=\,\boldsymbol{I}_n \quad\Rightarrow\quad F^+F\,=\,I\,,\](\(I\ \) the identity operator on the space \(\ C^n\)).
\(\ \) If \(\boldsymbol{A}\,\) is a normal matrix, \(\ \) then \(\,F\,\) is a normal operator:
\[\boldsymbol{A}^+\boldsymbol{A}\,=\,\boldsymbol{A}\,\boldsymbol{A}^+ \quad\Rightarrow\quad F^+F\,=\,F\,F^+\,.\]
Hence, all the theorems about eigenvalues and eigenvectors of Hermitian (unitary, normal) operators may be applied to eigenvalues and eigenvectors of Hermitian (unitary, normal) matrices.
Introduction to a proof of Theorem 3.
Hermitian conjugate of a matrix \(\boldsymbol{A} \in M_n(C)\):
Hermitian conjugation of an operator \(\ F\in\text{End}(V)\ \) on a unitary space \(\ V=V(C)\ \):
A necessary and sufficient condition for equality of two vectors:
Let \(\ \boldsymbol{x},\boldsymbol{y} \in V\,,\ \) where \(\ V=V(C)\ \) unitary. Then
\[\boldsymbol{x} = \boldsymbol{y} \quad \Leftrightarrow \quad \langle \boldsymbol{z}, \boldsymbol{x} \rangle = \langle \boldsymbol{z}, \boldsymbol{y} \rangle \quad \text{for all } \boldsymbol{z} \in V\,.\]
A necessary and sufficient condition for equality of two linear operators:
Let \(\ F,G\in\text{End}(V)\,,\ \) where \(\ V=V(C)\ \) unitary. Then
\[F = G \quad \Leftrightarrow \quad \langle \boldsymbol{x}, F \boldsymbol{y} \rangle = \langle \boldsymbol{x}, G \boldsymbol{y} \rangle \quad \text{for all } \boldsymbol{x},\boldsymbol{y} \in V\,.\]
An inner product on the space \(C^n\):
For \(\ \ \boldsymbol{x}\ =\ \left[\begin{array}{c} x_1 \\ x_2 \\ \ldots \\ x_n \end{array}\right],\ \ \boldsymbol{y}\ =\ \left[\begin{array}{c} y_1 \\ y_2 \\ \ldots \\ y_n \end{array}\right] \in C^n\,,\)
Hermitian conjuagation \(\ F^+\ \) of the operator \(\ F\ \) given by (1) describes
Lemma.
Proof of the lemma. For every vector \(\ \boldsymbol{y}\in C^n:\)
and thus \(\ F^+\boldsymbol{x}=\boldsymbol{A}^+\boldsymbol{x}, \ \ \boldsymbol{x}\in C^n\).
Proof of the Theorem 3.
\(\ \) Assume that \(\ \boldsymbol{A}^+=\,\boldsymbol{A}.\ \) Then for arbitrary \(\,\boldsymbol{x},\boldsymbol{y}\in C^n\):
\[\begin{split}\begin{array}{rll} \langle\boldsymbol{x},F^+\boldsymbol{y}\rangle \!\! & =\ \ \langle F\boldsymbol{x},\boldsymbol{y}\rangle\ \ =\ \ \langle\boldsymbol{A}\,\boldsymbol{x},\boldsymbol{y}\rangle\ \ =\ \ (\boldsymbol{A}\,\boldsymbol{x})^+\boldsymbol{y}\ \ = & \\ & =\ \ \boldsymbol{x}^+\boldsymbol{A}^+\boldsymbol{y}\ \ =\ \ \ \boldsymbol{x}^+\boldsymbol{A}\,\boldsymbol{y}\ \ \ =\ \ \langle\boldsymbol{x},\boldsymbol{A}\,\boldsymbol{y}\rangle\ \ = & \!\! \langle\boldsymbol{x},F\boldsymbol{y}\rangle , \end{array}\end{split}\]so that \(\ F^+=\ F\).
\(\ \) Assume that \(\ \boldsymbol{A}^+\boldsymbol{A}=\boldsymbol{I}_n.\ \) Then for arbitrary \(\,\boldsymbol{x},\boldsymbol{y}\in C^n\):
\[\begin{split}\begin{array}{rll} \langle\boldsymbol{x},(F^+F)\,\boldsymbol{y}\rangle \!\! & =\ \ \langle\boldsymbol{x},F^+(F\boldsymbol{y})\rangle\ \ =\ \ \langle F\boldsymbol{x}\,,F\boldsymbol{y}\rangle\ \ =\ \ \langle\boldsymbol{A}\,\boldsymbol{x}, \boldsymbol{A}\,\boldsymbol{y}\rangle\ \ = & \\ & =\ \ (\boldsymbol{A}\boldsymbol{x})^+\, (\boldsymbol{A}\boldsymbol{x})\ \ =\ \ \boldsymbol{x}^+\boldsymbol{A}^+ \boldsymbol{A}\,\boldsymbol{y}\ \ \, = \quad \boldsymbol{x}^+\boldsymbol{I}_n\,\boldsymbol{y}\quad\ = & \langle\boldsymbol{x},I\,\boldsymbol{y}\rangle , \end{array}\end{split}\]so that \(\ F^+F=I\).
\(\ \) Assume that \(\ \boldsymbol{A}^+\boldsymbol{A}= \boldsymbol{A}\boldsymbol{A}^+.\ \) By Lemma (3),
\[\begin{split}\begin{array}{rl} \langle\boldsymbol{x},(F^+F)\,\boldsymbol{y}\rangle \!\! & =\ \ \langle\boldsymbol{x},F^+(F\boldsymbol{y})\rangle\ \ =\ \ \langle F\boldsymbol{x}\,,F\boldsymbol{y}\rangle\ \ =\ \ \langle\boldsymbol{A}\,\boldsymbol{x}, \boldsymbol{A}\,\boldsymbol{y}\rangle\ \ = \\ & =\ (\boldsymbol{A}\,\boldsymbol{x})^+ (\boldsymbol{A}\,\boldsymbol{y})\ \ =\ \ \boldsymbol{x}^+(\boldsymbol{A}^+\boldsymbol{A})\,\boldsymbol{y}\ \ =\ \ \boldsymbol{x}^+(\boldsymbol{A}\boldsymbol{A}^+)\,\boldsymbol{y}\ = \\ & =\ (\boldsymbol{A}^+\boldsymbol{x})^+ (\boldsymbol{A}^+\boldsymbol{y})\ =\ \langle\boldsymbol{A}^+\boldsymbol{x}, \boldsymbol{A}^+\boldsymbol{y}\rangle\ =\ \langle F^+\boldsymbol{x},F^+\boldsymbol{y}\rangle\ = \\ \langle\boldsymbol{x},(FF^+)\,\boldsymbol{y}\rangle , \end{array}\end{split}\]for every \(\,\boldsymbol{x},\boldsymbol{y}\in C^n,\ \) and thus \(\ F^+F=FF^+\).