Matrix Transpose¶
The transpose of a matrix \(\,\boldsymbol{A}=[a_{ij}]_{m\times n}\,\) is defined as the matrix \(\,\boldsymbol{A}^T=\,[a^T_{ij}]_{n\times m}\,,\ \) where
In the direct notation: \(\qquad \left[\begin{array}{cccc} a_{11} & a_{12} & \ldots & a_{1n} \\ a_{21} & a_{22} & \ldots & a_{2n} \\ \ldots & \ldots & \ldots & \ldots \\ a_{m1} & a_{m2} & \ldots & a_{mn} \end{array}\right]^T \ =\quad \left[\begin{array}{cccc} a_{11} & a_{21} & \ldots & a_{m1} \\ a_{12} & a_{22} & \ldots & a_{m2} \\ \ldots & \ldots & \ldots & \ldots \\ a_{1n} & a_{2n} & \ldots & a_{mn} \end{array}\right]\,.\)
Thus each \(\,i\)-th row of matrix \(\,\boldsymbol{A}^T\,\) is composed of elements of the \(\,i\)-th column of matrix \(\,\boldsymbol{A},\,\) and each j-th column of matrix \(\,\boldsymbol{A}^T\,\) is composed of elements of the \(\,j\)-th row of matrix \(\,\boldsymbol{A},\,\) \(\ i=1,2,\ldots,n;\ j=1,2,\ldots,m.\)
Graphically, the operation of transposing a matrix may be described as the reflection of that matrix over its main diagonal.
Examples.
1.) \(\ \) If \(\ \ \boldsymbol{A}\ =\ \left[\begin{array}{rr} 2 & - 1 \\ 3 & 0 \\ - 2 & 1 \end{array}\right] \in M_{3\times 2}(R),\ \ \) then \(\ \ \boldsymbol{A}^T\ =\ \left[\begin{array}{rrr} 2 & 3 & -2 \\ -1 & 0 & 1 \end{array} \right]\in M_{2\times 3}(R).\)
2.) \(\ \) Transpose of a square matrix over the ring \(\,Z:\) \(\ \ \left[\begin{array}{rrr} -2 & 1 & 0 \\ 5 & 2 & 3 \\ 7 & -3 & 8 \end{array}\right]^T =\ \;\left[\begin{array}{rrr} -2 & 5 & 7 \\ 1 & 2 & -3 \\ 0 & 3 & 8 \end{array}\right]\,.\)
3.) \(\ \) Transpose of a one-column matrix over any ring: \(\ \ \left[\begin{array}{c} a_1 \\ a_2 \\ a_3 \\ a_4 \end{array}\right]^T =\ \;\left[\begin{array}{cccc} a_1 & a_2 & a_3 & a_4 \end{array}\right]\,.\)
Properties of Transpose.
0.) \(\,\) If \(\,\boldsymbol{A}\in M_{m \times n}(K),\,\) then \(\,\left(\boldsymbol{A}^T\right)^T\ =\ \boldsymbol{A}\)
(a twofold application of transpose returns the original matrix).
1.) \(\,\) Let \(\,\boldsymbol{A},\boldsymbol{B}\in M_{m \times n}(K),\ c\in K.\ \ \) Then \(\ \ (\boldsymbol{A}+\boldsymbol{B})^T =\, \boldsymbol{A}^T + \boldsymbol{B}^T,\ \ (c\boldsymbol{A})^T =\,c\boldsymbol{A}^T\,.\)
(transpose of a sum of two matrices equals the sum of their transposes, \(\\\) a numerical factor may be moved up to the front of the transpose symbol: \(\\\) transpose is a linear operation).
2.) \(\,\) Let \(\,\boldsymbol{A}\in M_{m\times p}(K),\ \boldsymbol{B}\in M_{p\times n}(K).\ \) Then \(\ \ (\boldsymbol{A}\boldsymbol{B})^T =\, \boldsymbol{B}^T\boldsymbol{A}^T\,\)
(transpose of a product of two matrices equals the product of their transposes in reverse order).
Proof of the Property 2.:
- Comparison of the matrices’ dimensions.\(\boldsymbol{A}\boldsymbol{B}:\ m\times n\,;\quad (\boldsymbol{A}\boldsymbol{B})^T:\ n\times m\,.\)\(\boldsymbol{B}^T:\ n\times p\,;\quad \boldsymbol{A}^T:\ p\times m\,;\quad \boldsymbol{B}^T\boldsymbol{A}^T:\ n\times m\,.\)
- Comparison of the corresponding matrix elements.For \(\boldsymbol{A} = [a_{ij}]_{m\times p}\,,\ \boldsymbol{B}=[b_{ij}]_{p\times n}:\)\((\boldsymbol{A}\boldsymbol{B})^T|_{ij}\ =\ (\boldsymbol{A}\boldsymbol{B})|_{ji}\ =\ \sum\limits_{s=1}^p \,a_{js}\,b_{si}\,,\)\(\boldsymbol{B}^T\boldsymbol{A}^T|_{ij}\ =\ \sum\limits_{s=1}^p \,b_{is}^T\,a_{sj}^T\ =\ \sum\limits_{s=1}^p \,a_{js}\,b_{si}\,,\quad i=1,2,\ldots,n;\ \ j=1,2,\ldots,m.\quad\bullet\)
Symmetric and Skew-Symmetric Matrices¶
A square matrix \(\,\boldsymbol{A}=[a_{ij}]_{n\times n}\in M_n(K)\,\) is called a symmetric matrix, \(\\\) if \(\,\boldsymbol{A}^T=\boldsymbol{A}\,,\ \) that is if \(\ \, a_{ij} = a_{ji}\,,\ \ i,j=1,2,\ldots,n.\)
Such matrix is invariant under the reflection over its main diagonal.
On the other hand, when \(\,\boldsymbol{A}^T=-\boldsymbol{A}\,,\ \) the matrix \(\,\boldsymbol{A}\ \) is said to be skew-symmetric.
Then \(\ a_{ij} = - \ a_{ji}\,,\ \ i,j=1,2,\ldots,n,\ \) wherefrom \(\ a_{ii} = 0\ \ \text{for}\ \ i=1,2,\ldots,n. \\\) (in a skew-symmetric matrix all diagonal entries vanish).
Symmetric and skew-symmetric real matrices of size three have the following general form:
Every square matrix \(\,\boldsymbol{A}\in M_n(K)\,\) may be expressed in a unique way as a sum of a symmetric and a skew-symmetric matrix components:
In Sage the matrix transpose is performed by the method transpose()
(abbreviated to T
). There are also methods is_symmetric()
and is_skew_symmetric()
, which check whether a given square matrix
has the respective property.
Example. \(\,\) We shall rewrite the matrix
as the sum of symmetric and skew-symmetric components. The Sage code:
sage: A = matrix(QQ,[[4, 3,-1],
[2,-5, 8],
[0,-2, 1]])
sage: As = (A + A.T)/2
sage: Aa = (A - A.T)/2
sage: show(table([[A, '=', As, '+', Aa]]))
sage: (As.is_symmetric(), Aa.is_skew_symmetric())
yields the following result:
(True, True)